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L STRUCTURE AND CAPABILITIES

1.,1) mouto

Much research has been directed in recent years towards the development

of sophisticated constitutive models which can more accurately account for the

diverse stress-strain phenomena exhibited by soils and other earth materials.

One of the most promising of these new models is a plasticity based formulation

known as the Bounding Surface model The Bounding Surface formulation was

originally introduced for metals by Datalias and Popov (1974, 1975) and Dafalias

(1975), and later extended to cohesive soils by Daalias (1979) and Dafalias and

Herrmann (1980, 1982). The model is built within the framework of traditional

critical state soil mechanics and employs the concept of a bounding surface in

stress space. It has been shown to have the ability to accurately capture both

the drained and undrained behavior of clay type soils, at any overconsolidation

ratio, under either monotonic or cyclic loading.

In its most general form, the Bounding Surface model requires the

determination of 19 separate constitutive parameters, including 2 initial state

properties, 5 traditional material constants, whose values may be directly obtained

from simple well known laboratory experiments, and 12 model constants, which

must be indirectly established through a trial and error curve fitting process

using the results of undrained triaxial testing. A general summary of the various

properties is presented by Herrmann et a (1980), and a more detailed description

of both the qualitative and quantitative influence of each parameter is provided

by DeNatale (1982).

This breakdown of model constants is common to most, if not all, of the

soil formulations introduced in recent years. Determination of the directly

measureable or "fixed" parameters is straightforward and readily accomplished.

Determination of the remaining "free" parameters, however, can make the

2
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calibration procedure prohibitively difficult. Rather than being measured directly

from a particular portion of a specific laboratory test, these so-called "free"

parameters must be established by trial and error, with the objective being to
p.-.

obtain the best overall fit to a given experimental relation or set of observed

responses. As a result, the acuracy and efficiency of the calibration process

can be strongly dependent on both the subjectivity of the user as well as his

expertise with the particular material model.

In formulations such as the Bounding Surface model, which employ a small

number of material parameters whose roles in the constitutive formulation are

each well defined, the calibration process becomes systematic and

straightforward. However, reliance on user expertise is still high, since all

manual curve fitting procedures, by their very nature, require both judgement

(in deciding just what constitutes the "best" overall fit) and familiarity (in

deciding how much each parameter's value must be changed to improve a given

prediction).

In order to simplify the model calibration process, a computer code has

recently been developed by DeNatale (1982) and tested on a variety of real

soils. The code employs a Quasi-Newton optimization strategy to locate that

set of parameter values which minimizes the discrepancy between the model

predictions and the experimental observations included in the calibration data

base. Because this new computer aided procedure greatly reduces the dependence

of calibration success on user expertise, it significantly increases the accessibility

and usefulness of sophisticated material models to the general engineering

community.

1.2) The Objective Function

Since the calibration of a constitutive model involves minimizing the

error, or residual, between the observed and predicted material response, the

3



process can quite naturally be viewed as an optimization problem. Hence, in

%order to develop a computer directed calibration procedure, it is necessary to

(i) construct an objective function to serve as a scalar measure of the goodness

of a particular solution, and (ii) select a search strategy to enable the minimum

of this function to be located in an efficient and reliable manner. In both the

computer code and the discussion to follow, it is assumed that the model

predictions are closely enough spaced so that, by joining adjacent points with

linear segments, it is possible to obtain a good approximation to a smooth curve

(and thus the concept of a prediction "curve" is valid).

In forming an objective function, the total error between the experimental

observations and model predictions could be expressed by either (i) summing the

discrete residuals at each of the experimental points included in the calibration

data base, or (ii) for each response relation, fitting smooth polynomials through

both the observed and predicted data, and then integrating numerically to obtain

the area (or residual) between the two curves. In the present study the "discrete"

approach was employed, since it appeared to be the most efficient and versatile

of the two.

In most data fitting and regression routines, the problem is generally

posed in terms of one or more independent variables x and a dependent variable

y=y(x). The best fit to the data is then obtained by minimizing some scalar

measure which reflects the error in the dependent variable y. This definition

of error will hereafter be referred to as the "vertical" measure.

In geotechnical engineering, a number of different variables are typically

used to define the soil response. In a conventional undrained triaxial compression

test, for example, the response might be characterized in terms of such quantities

as the mean normal effective stress p *, the deviator stress q, the pore water

stress u, and the axial strain el .  The distinction between independent and
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dependent parameters is not at all clear. In a so-called "strain-controlled" test,

it could perhaps be argued that el represents the independent variable; therefore

a vertical measure may be appropriate when considering such relations as q vs

- and u vs el" But if the data were portrayed as a stress path in q-p* space,

both axes would then represent dependent parameters, and the traditional

classification would again break down.

For those cases in which all aspects of the soil response can be expressed

in terms of a single quantity (by using, for example, p* vs el, q vs e and u

vs C rather than q vs p", q vs c and u vs cl), a vertical measure may be

reasonable. However, if the distinction between independent and dependent

variables cannot be made clear, there is no more reason to use a vertical

measure (y=y(x)) than there is to use a horizontal measure (x=x(y)). In these

cases it is probably more appropriate to use a measure such as the shortest

distance between the experimental observation and prediction curve. While there

is no reason to suspect that this alternative is theoretically more sound, such

a "Euclidean" measure is probably closer to what one intuitively uses when

estimating, by sight, the error between two curves.

In addition to defining a direction along which the error will be measured,

it is also necessary to consider whether the sum of the signed, absolute or

squared residuals should be minimized. In regression analysis, a squared measure

has traditionally been used. The squared measure not only yields a unique

solution, but also has additional statistical relevance (as described, for example,

by Alder and Roessler (1968)). The absolute measure likewise yields a unique

solution, but is generally avoided due to the mathematical difficulties customarily

associated with the occurance of absolute values. The signed measure is only

rarely used, because it can lead to non-unique solutions.

Since there is no theoretical reason to select one or the other, the

calibration code permits eil 'er absoiuto or squared residuals to be used to form



the objective function. When these two options are combined with the choice

of either vertical or Euclidean measure (as described above), the user then has

four possible ways to define the error at a point. Recent research by DeNatale

(1982) has shown that the location of the global minimum remains essentially

the same, regardless of which options are used. However, preliminary applications

to a variety of artificial and real soils indicate that the absolute-Euclidean

measure results in a more well-behaved objective function that can be most

easily minimized.

In order to combine the residuals at various points within a given relation

(for example, the q vs cl relation from a test at OCR=I), or from relations of

ti'same kind obtained from different tests (for example, the u vs 1 relation

from tests at OCR=1 and 2), it is necessary to first define what is meant by

"equal" error. A given solution could be defined to be equally good at two

points A and B if either (i) there was the same absolute e-ror at both A and

B, or (ii) there was the same relative error at A as at B. The decision as to

which definition of equality should be used is entirely up to the user. The

computer code permits the use of either extreme, or any point in between.

Zonsequences of the various choices are discussed further by DeNatale (1982).

It should be noted that most physical analogies lie somewhere in the middle -a

given dial gauge or pore pressure transducer may be accurate to within a%, but

may fail to register any meaningful readings below a magnitude of 0.

The code permits any number of tests, relations and/or individual

observations to be included in the calibration data base. Because the various

response relations will generally be of different dimensions (such as stress vs

stress, stress vs strain, strain vs strain, etc.), all data is nondimensionalized so

that errors from different relations can be properly combined. Different weights

may be assigned to specific components of the data base if it is felt that certain

6
.L



• ,, ,. .. : . ., -, .- .- . . - -. . .. - i.i i , . - - -' " i . : - - --

tests, relations or observations are more reliable or representative than others,

or if it is necessary to have the final model predictions fit some data more

closely than others. T. consequences and proper role of weighting factors is

again discussed by DeNatale (1982).

1.3) The Optimization Strategy

An extremely large number of optimization strategies have been suggested

*over the last 30 years, with the performance of a given approach being strongly

dependent on the particular type of problem to which it is applied. Hence, it

is generally agreed that there is no single best algorithm, but, rather, only

"* strategies which perform best when applied to certain classes of problems.

In selecting the most suitable approach, a key factor is whether or not

first and second derivative information can be readily obtained. With the

Bounding Surface model, as with most sophisticated material models, the

governing equations are so complex that it is essentially impossible to directly

relate the relevant response parameters (such as p*, q, U, C,, etc.) to the

constitutive parameters employed by the formulation. Thus, the objective

function must be formed by summing a series of discrete weighted residuals,

and therefore first and second derivative information is not explicitly available.

Under these conditions, the current consensus among those most active
%4

in optimization research (including, for example, Fletcher (1980) and Gill et al

(1981)) is that a Quasi-Newton strategy with finite difference approximations to

derivatives will, if properly implemented, generally exhibit the most efficient

and reliable performance. Hence, a Quasi-Newton strategy was incorporated

into the calibration code to direct the search.

The Quasi-Newton algorithms avoid most of the difficulties associated

with Newton's method (as outlined, for example, by Murray (1972)), while retaining

the roubstness of the second derivative methods. In contrast to Newton's method,

u7



where the Hessian G is evaluated directly at etua, iteration, the Quasi-Newton

routines build up curvature information gradually as the search proceeds, relying

only on the observed behavior of the objective function f and its gradient g.

In the Quasi-Newton approach, the inverse Hessian G is approximated

by a symmetric, positive-definite matrix H which is updated at each iteration.

The kth iteration of the search has the form (Fletcher (1980)).

Si)set sk = -Hkgk

ii) perform a line search along sk, ending at

x k +  = xk + Oks k

iii) update Hk, yielding Hk+l

where xk denotes the kth solution vector, sk represents the kth search direction,

and a is a positive scalar.

Since the basic premise in the Quasi-Newton strategy is that curvature

information can be estimated without explicitly forming the Hessian G, most

research with these methods has focused on the development of improved formulae

for updating H in step (iii) above. At the present, the BFGS

(Broyden-Fletcher-Goldfarb-Shanno) update is generally regarded as the most

effective. The update has the form:

=~ ~ H + ( 4 : fr 8 T T
:k~ H . + (X, T) 8Y (TH+ Wy T

where:

k k+l k
y =g -g

k k.1 k k* 6k = xk  -x k = as k

and where the superscript k has been dropped for convenience. Further details

of the BFGS update and other aspects of the Quasi-Newton methods are provided,

-a

:_ for example, by Broyden (1972), Dennis and Mor~f (1977) and Fletcher (1990).
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To accomplish the line search in step (ii) above, a strategy outlined by

Fletcher (1980) was employed, together with certain ad hoc modifications

described by DeNatale (1982). This particular strategy permits the line search

to be carried out to any degree of accuracy, which is ideal, since a primary

advantage of the BFGS update is that it generally performs most efficiently

with low accuracy line searches.

Because no analytic expressions are available for first derivatives &,

gradients must be evaluated by finite differences. The strategy used is patterned

after that described by Stewart (1967). Directed by the local geometry of the

objective function, the algorithmn switches between forward and central

differencing formulae, and continually adjusts the differencing interval, in an

attempt to balance round-off and truncation errors.

Finally, the code permits constraints to be imposed on the various

constitutive parameters in the form of simple bounds:

I. xou

I X I

where I and u. represent the minimum and maximu values that parameter x.

can assume. A restriction of this kind would be appropriate if either ithere

were certain theoretical restrictions placed on the value which a given parameter

could assume, or (ii) there were certain ranges of parameter values beyond which

the numerical implementation of the material model became unstable, or ii)

certain material properties were observed experimentally to vary over some

finite range, and there was no overwhelming reason to fix them prior to calibration

at any particular values.

There are a number of ways to directly (through the use of a constrained

Soptimization code) or indirectly (through the use of barrier and penalty functions,

Lagrange multipliers and/or variable transformations) account for simple bounds.

9



. After a review of available literature, it was concluded that a trigonometric

I1 variable transformation would provide the most straightforward solution. Hence,

, rather than minimizing f(x) subject to £I< xi<u , the program makes the

transformation:

x. = Z + (u-i) si n 2 yi

or*

~1 sin'I 1/

and minimizes f[x(y)J=f(y), where yi can now assume any value in the range

-r<Yi < +-w. Although variable transformations are potentially subject to a number

of difficulties (as described, for example, by Gill et al (1981)), the above

transformation was found to work extremely well in this application, with no

detectable problems.

1.4) Generation of Model Predictions

I ne search for the optimal set of parameter values is directed by the

Quasi-Newton strategy previously described. However, in order to evaluate the

objective function at some location x, it is first necessary to generate a

corresponding set of model predictions. To accomplish this, the calibration code

relies on two subroutines - EVAL and CLAY - developed by Herrmann et al

( 980, 1981) during previous research with the Bounding Surface model. Subroutine

EVAL performs, essentially, single-element, incremental-iterative finite element

analyses of bodies under a homogeneous state of stress and/or strain. Subroutine

CLAY consists of a numerical implementation of the governing constitutive

equations, and thus, when called, provides the appropriate material response to

the given stress and/or strain increment. In order to adapt the present calibration

code to other constitutive models, one need only replace CLAY with the

10
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appropriate materials subroutine. Additional details of subroutines EVAL and

CLAY are presented by Herrmann et al (1910, 1981, 1982).

- 1.5) The Calibration Data Base

The ultimate goal of the calibration process is to identify that set of

parameter values which enables the theoretical model to most closely simulate

the observed material response. This goal is ordinarily accomplished by fitting

*the model to a representative set of experimentally observed stress-strain

relations or "calibration data base." Ideally, this calibration data base should

be complete and diverse enough that all important aspects of the material's

response are included, and all necessary constitutive parameters may be uniquely

established.

In its most general form, the Bounding Surface formulation becomes a

fully three-dimensional stress-strain model. With a single set of parameter

values, the model may be applied to specimens at all overconsolidation ratios

(OCR's), subjected to either monotonic or cyclic compression and/or extension

loading, under either drained or undrained conditions. Hence, to establish the

optimal values of the necessary constitutive parameters, the calibration data

base should ideally contain observations (in the form of q vs p', q vs £1 and

i u vs 1 relations) from the following seven standard laboratory tests:

i) an isotropic (or Ko) consolidation or drained compression

test, with both loading and unloading; and,

ii-vii) undrained triaxial compression and extension tests on

specimens in the normally (OCR 1), lightly ( < OCR < 2.5)

and heavily (OCR > 4) overconsolidated regions.

The results of the consolidation test are required to establish the slopes of the

isotropic consolidation and swell/recompression curves in e-In po space, A and K.

These two parameters belong to the class of traditional material properties, and

* I



would normally be assigned values immediately, prior to using the automated

calibration procedure. The results of the six undrained triaxial experiments are

required to determine the 12 model constants cited in section 1.1, and would

thus provide the data needed to direct the automated calibration procedure.

Naturally, if a less general form of the Bounding Surface model is acceptable,

the number of constitutive parameters involved, and the number of laboratory

experiments required, can be drastically reduced. For example, if the model is

only to be applied to normally consolidated soils loaded in triaxial compression,

the number of required constitutive parameters drops from 19 to 7, and only

the isotropic consolidation results and a single triaxial test are needed for model

calibration.

Although the above data base is strongly recommended, the Bounding

Surface model could also be calibrated using other types of data. For example,

drained rather tln rdrained tests could be employed. However, undrained

tests are preferable, since good initial estimates for many of the model

parameters can be made by examining the experimentally observed undrained

stress paths.

There is also some evidence that the calibration data base need not

necessarily include data from all three regions of overconsolidation ratio (see

DeNatale (1982)). That is, it may be sufficient to include only tests from the

normal and heavy ranges, or, perhaps, even from the heavy range alone. The

*' data which supports this possibility is not, however, conclusive, and therefore

testing at all three overconsolidation regions is still advised.

In addition, the experimental observations need not necessarily include all

three response relations q vs p*, q vs cl and u vs . Note that of the fourII
undrained response parameters p*, q, u and cl, only three are independent. In

practice, p* is never actually measured, but, rather, is computed from the

relation:

12



ip 3 (a -u) +q

where o represents the applied lateral confining pressure. Thus, any two of

the three relations cited above will completely define the soil response. The

use of q vs p" or q vs e1 data alone is insufficient, since each of these relations

is insensitive to certain of the constitutive parameters. There is some evidence

that the use of u vs 1 data alone may, however, be adequate (see DeNatale

(1982)). Nevertheless, the use of all three response relations appears to increase

*- the rapidity with which the optimization algorithm converges to the minimum.

Presumably, the inclusion of redundant data reinforces the correct search

direction. Hence, since the cost of a computer directed calibration run is only

marginally affected by the number of response relations included in the calibration

data base, it is therefore still recommended that all three of the relations cited

above be used.

Finally, it may be possible to use testing devices other than the triaxial

apparatus to acquire the necessary experimental observations. Although the

conventional triaxial apparatus is the most common and versatile laboratory

device, the simple shear apparatus could, for example, also be used. In general,

the material's observed stress-strain characteristics will, to some extent, be

dependent on the testing device employed. Thus, in practical problems, the

laboratory device used to acquire the calibration data base should simulate, as

closely as possible, the loading conditions for which Bounding Surface predictions

will eventually be generated.

1.6) Practical Considerations

As previously mentioned in section 1.2, the automated calibration code

seeks to locate the objective function's global minimum. Unfortunately, there

is no guarantee that the algorithm will always succeed. The Quasi-Newton

13



strategy employed by the model calibration code, like most, if not all, practical

optimization algorithms, is designed only to locate local minima in the vicinity

of the initial estimates. Hence, the probability that the true global minimum

will be found is directly related to the degree of unimodality exhibited by the

objective function and the accuracy of the initial starting guess.

Preliminary research by DeNatale (1982) has shown that the use of the

absolute-Euclidean measure of error leads to a more unimodal, and thus desireable,

objective function. A procedure for acquiring improved starting estimates has

also been developed by DeNatale (1982). Through actual testing with a number

of different soils, this strategy has been found to produce starting estimates

which enable the automated calibration code to consistently locate the global

minimum. In practice, however, the only way to ensure that the global minimum

has been found is to conduct the search from a variety of different starting

points. The solution which yields the lowest value of the objective function

may then be regarded as the true global minimum.

A second practical consideration concerns the quality of the calibration

data base. The user should ensure that the experimental observations included

in the calibration data base are diverse enough to permit the optimal values of

the required unknown model parameters to be uniquely defined. For example,

if the code is used to identify those model parameters associated with the

heavily overconsolidated material response, the calibration data base must include

observations made on heavily overconsolidated soil specimens. If the necessary

experimental data is not included, the program will continue to execute, but

the final computed "optimal" values of the undefined parameters will be very

close to the initial estimates.

The major consequence of an inadequate or incomplete calibration data

base is therefore related to the cost of the analysis. Certain computational

14



costs increase in proportion to n2 (where n represents the number of parameters

whose optimal values are being sought), and a single gradient evaluation requires

either n or 2n additional objective function evaluations, depending on whether

forward or central differencing formulae are used. Thus, to minimize the cost

of the analysis, the user should seek to identify only those parameters whose

optimal values can be defined, given the particular experimental data base. A

comprehensive discussion of the influence of each of the 19 model parameters

is provided by DeNatale (1982), which may be referred to if any uncertainty

exists.

1.7) Verification

In order to verify the viability of the new computer aided calibration

procedure, the method was applied to a number of representative data bases,

both artificial and real. The outcome of these studies is discussed in detail by

DeNatale (1982). Among the real data bases to which the automated process

was applied was the experimental research on Kaolin reported by Wroth and

Loudon (1967). The Bounding Surface model was calibrated on the basis of

undrained triaxial compression tests on samples at overconsolidation ratios of

OCR = 1.0, 1.5 and 4.5. With the necessary constitutive parameters having thus

been fixed at their optimal values, predictions were then generated for (i)

undrained triaxial compression tests at OCR = 1.2, 1.8, 2.5, 3.0 and 6.5, (ii) an

undrained cyclic triaxial compression test at OCR = 1.0, and (iii) a drained

triaxial compression test at OCR 1.3. The experimental observations and
-- model predictions are compared in Figures 1.1 through 1.3. Further details of

the calibration procedure and predictions for this particular data base are provided

by both DeNatale (1982) and Herrmann et al (1982).

1
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° i:~ 1.1cost
The automated calibration code has been written in FORTRAN and

implemented on both an LSI-11/23 minicomputer, as well as a VAX-11/790

super -minicomputer. The cost of a given analysis is controlled primarily by the

number of distinct experimental tests included in the calibration data base and

the number of constitutive parameters whose optimal values are being sought.

A typical computer calibration, such as that reported in section 1.7 for the data

of Wroth and Loudon (1%7), requires from 200-400 objective function evaluations,

or about 30-60 minutes of VAX CPU time, at a cost of approximately $25.00-

$50.00. When compared to the expense associated with the acquisition of the

experimental calibration data base, or the expense of subsequent finite element

analyses involving the calibrated model, the cost of a typical computer aided

calibration becomes relatively low. Note also that the material model need

only be calibrated once for any particular soil, regardless of the variety and

number of finite element analyses that may subsequently be performed.

1.9) CAnclWion

In order to facilitate the calibration of sophisticated constitutive models,

an automated FORTRAN code has been developed and tested. The code employs

a Quasi-Newton optimization strategy to locate that set of parameter values

.- which minimizes the weighted residual between the model predictions and the

experimental calibration data base. Through application to a number of real

soils, this new procedure has been found to be an efficient, reliable and economical

means of accomplishing model calibration.

Although the code was developed specifically for use with the Bounding

Surface plasticity model, it can be readily adapted to other constitutive

formulations. Because the code greatly reduces the dependence of calibration

19



success on user expertise, it significantly increases the accessibility and usefulness

of sophisticated material models to the general engineering community.

In addition to being a useful practical tool, the code can also be of great

value to the theoretician involved in model development. Since use of the code

enables various sets of model predictions to be quantitatively compared, it

enables one to investigate such features as (i) the model's sensitivity to each

of the constitutive parameters, (ii) the significance and uniqueness of each

parameter's effect, (iii) the influence of the calibration data base on the computed

optimal solution and (iv) the uniqueness of a givei solution or set of model

predictions. These uses of the code, as well as several others, are discussed

and illustrated in greater detail by DeNatale (1982).

The computer aided procedure is not, however, a cure-all, and use of the

automated scheme does not guarantee that all problems associated with manual

model calibration will disappear. Many of the difficulties encountered during

the manual calibration of a particular material model have little or nothing to

do with user expertise, but, rather, arise due to the nature of the formulation

itself. The presence, in a particular model, of an excessive number of constitutive

parameters, or ill-defined parameters with non-unique effects, will always make

a unique solution difficult, or perhaps impossible, to find, regardless of whether

a computer approach is used or not. Thus, it is best to regard the automated

procedure as a useful tool for well-constructed models, rather than as a fool-proof

cure for i-constructed ones.
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I1. INPUT INSTRUCTIONS FOR MODCAL

L Heaing Information Card:

1st Card (20*).

Columns

1 - so TITL : any information that is to be printed as
a title for the analysis

H. Control Codes and Analytical Options Card

1st Card (1615).

Columns

I - 5 NTST : number of distinct experimental tests for
which model predictions are desired, or
on which model calibration is to be based

6 - 10 3OPT = 0 * model calibration not required
I * model calibration required

11 - 15 3RUN = 0 * model predictions not generated
1 model predictions generated

16 - 20 3PLT = 0 * observed and predicted responses
not plotted

1 observed and predicted resp.nses
plotted

21 - 25 KRSL = 0 * Euclidean measure of error used
1 * vertical measure of error used

26 - 30 KNRM = 0 * absolute residuals used
1 * squared residuals used

31 - 35 NOPT : number of parameters to be established
by optimization

36 - 80 KOPT (11), 11 = 1, NOPT: property numbers of the
NOPT parameters to be established by
optimization (see section III and Table
2.1). Use 15 formats and continue on a
2nd card if necessary (that is, if
NOPT > 9)

22



ilL Material and Model Properties Cards:

1st Card (s00.3)

Columns

I - 10 1 : slope of the isotropic consolidation line
in e - In p space

11 - 20 i : slope of the swell/recompression line in
e - In p space

21 - 30 M C  slope of the critical state line in triaxial
compression

31 - 40 M eM : ratio of extension to compression values

41 - 50 G : elastic shear modulus (or, alternatively,
Poisson's ratio v)

51 - 60 r combined bulk modulus of the pore water
and soil skeleton. For drained conditions,
r = 0. For undrained colditions, a value
in the range r (10 to lO )-pa is
recommended

61 - 70 PP transitional stress at which the drained
compression response changes from linear
in e - p space to linear in e - In p space.
If no data in this region is available, a
value in the range p1 = (0.3 to 1.0)-p
is recommended a

71 - 80 Pa : atmospheric pressure

2nd Card (7E10.3)

*O Columns

1 - 10 Rc : surface shape parameter associated with
ellipse I in compression

11 - 20 AC  : surface shape parameter associated with
* the hyperbola in compression

SIf model calibration is required, it is not necessary to enter estimates

46 for those parameters whose optimal values are being sought.
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21 - 30 T surface shape parameter associated with
ellipse 2 in compression and extension.
A value in the range 0.05 < T < 0.15
is suggested

31 - 40 Re/R : ratio of extension to compression valuese c
41 - 50 AeA c  : ratio of extension to compression values

51 - 60 c projection point parameter. A value of
c = 0.0 places the projection point at
the origin

61 - 70 s elastic nucleus parameter. A value of
s = 1.0 causes the elastic zone to
degenerate to a point

3rd Card (4E0.3):

Columns

1 - 10 hc  primary hardening parameter in compres-
sion

11 - 20 m: secondary hardening parameter in com-c pression. A value in the range
0.2<m< 1.0 is suggested

21 - 30 h e/h : ratio of extension to compression values

31 - 40 m em : ratio of extension to compression values

-th Cards (15, X, OEIO.3)

One card is required for each of the NTST distinct experimental
tests for which model predictions are desired:

Columns

1 - 3 ITST : test number

11 - 20 eo  : initial void ratio

21 - 30 PO : initial maximum past effective precon-
solidation pressure

31 - 40 : initial confining pressure

41 - 30 OCR : initial overconsolidation ratio, as defined
by OCR po
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- IV. Convergence Criteria and Iteration Information Card:

1st Card (315, UX, 4EIO.3k:

Columns

I- 5 KIND 0 - reformulated nearly incompres-
sible analysis

I - non-reformulated nearly incom-
pressible analysis

6 - 10 1TMX maximum number of iterations permitted
for a given solution increment. Values
in the range 5 < ITMX < 10 are
suggested

11 -15 LARG 0 - engineering stresses and strains
assumed

" * true stresses and natural (log-
arithmic) strains assumed

- 21 -30 CNFR establishes CNFR and l/CNFR as the
lower and upper limits for the calculated
values of the Aitken% acceleration
factors. Values in the range 0.0< CNFR
< 1.0 are permitted, and if CNFR = 1.0,
acceleration factors will not be used

31 -40 ERMX maximum allowable relative difference
between the norms of the incremental
stress and strain vectors from two con-
secutive iterations. Values in the range
0.001 < ERMX < 0.01 are recommended.
if convergence does not occur within
ITMX iterations, a message is printed
and program execution will cease

41.- 50 PLIM percentage of the maximum absolute
experimentally observed y-value for a
given plot, below which absolute rather
than relative errors are used. Values in
the range 0.0 < PLIM < 1.0 are
permitted, with PLIM = 0.0 resulting in
relative errors being used at all points

67- and PLIM = 1.0 resulting in absolute
errors being used at all points

51- 60 TLIM percentage of the maximum absolute
experimentally observed y-value for a
given type of relation, below which
absolute rather than relative errors are
used. Values in the range 0.0 < TLIM
< 1.0 are permitted, with TLIM = 0.0
resulting in relative errors being used for
all plots and TLIM 1.0 resulting in
absolute errors being used for all plots

25



V. Specified Loading History Cards:

The following sequence of cards must be supplied for each of the
NTST distinct experimental tests for which model predictions are
required:

1st Card (215)

Columns

I - 5 ITST : test number

6 - 10 NSEG : number of distinct history segments into
which the test is subdivided

2nd Cards (6 (I. E9.2). 5X. [D, E1O.3).

One card is required for each of the NSEG distinct history segments
into which the test is subdivided:

Columns

I LTYP1  = 0 a is specified
S +zx is specified

2- 10 VALU value ofa or c at the end of the given
history selmeniC

11 LTYP 2  = 0 a y is specified
I F is specified

y
12 - 20 VALU2  : value of a or c at the end of the given

history selmenty

21 LTYP3  = 0 a is specified
3 1 cz is specified

z
22 - 30 VALU3  value of a or e at the end of the given

history sejmen?
31 LTYP4 = 0 r "t is specified

I -. xY is specified

xy
32 -40 VALU4  value of t or y at the end of the

given histoA segmit

41 LTYP3  = 0 - z is specified5 1 z is specified

42 -0 VALU, : value of T or y at the end of the
given histo* segmlt

26
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51 LTYP 6  - 0 * -r z is specified
I * -Yyz is Specified

52 -60 VALU6  • value of t or y at the end of the
given histc§ segrat

66- 70 NINC : number of increments into which the
given history segment is to be subdivided

71- 0 SRAT incrementing ratio which defines the
relative magnitude of two consecutive
loading increments within the given
history segment. A value of SRAT = 1.0
results in NINC equally spaced loading
increments1  By defiition SRAT =
AOnAn'X(or A ¢"/AC -"), where the
superscripts n-I and n denote the values
in two consecutive loading increments

2.
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VL Exeimental Data and lott hisinations Cards

The following sequence of cards must be supplied for each of the
NTST distinct experimental tests for which model predictions are
required:

Ist Card (215 E10.3, 15k

Columns

1 - 5 ITST : test number

6 - 10 NPLT : number of distinct experimental relations
associated with the given test

11 - 20 VTST : weighting factor for the given test. By
default, WTST = 1.0

21 - 25 NWPT n rumber of distinct experimental obser-
vations associated with the given test to
which weights other than 1.0 will be
assigned

2nd Card (4 (21, EIO.3).

Columns

I - 5 KPLT1  : type of plot for the first experimental
relation (see Table 2.2)

6 - 10 NEXP1  : number of distinct experimental obser-
vations associated with the given relation

11 - 20 WPLT1  : weighting factor for the given relation.
By default, WPLT = 1.0

21 -80 + repeat entries for columns 1-20 as
described above (in the identical format)
until all NPLT distinct experimental
relations have been described

The following sequence of cards must be provided for each of the
NPLT distinct experimental relations associated with test ITST for
which NEXP A 0:

3rd Cards (SEO.3)

Use as many cards as necessary to enter the y - values (or ordinates)
of the NEXP distinct experimental observations associated with
relation K PLT of test ITST

4th Cards (SE10.3)h

Use as many cards as necessary to enter the x-values (or abscissae)
of the NEXP distinct experimental observations associated with
relation KPLT of test ITST

28



NTST
VII. Special Experimental Weightings Cards (Include if Z NWPT

0 In section Vf

1st Cards (213, I. El0.3)s

Columns

I - 3 IT : test number

*- 6 IP : plot number

7 - 10 1E : experimental observation number

11 - 20 WPNT : weightingt actor for the IEth observation
in the IP plot of the ITth test

21 - 80 * * : repeat entries for columns 1-20 as
described above (in the identical format)
until all I NWPT distinct special
weightings have been described.
Continue on a 2nd card if necessary

The remaining input cards are only necessary for those analyses where
3OPT = 1 (in section ID and, therefore, model calibration is required.

2Y.29
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VI Calibration Control Codes Card;

1st Card (gL ):

Columns

I - 5 NDDI number of parameters whose optimal
values are being sought

6 - 10 NFMX maximum allowable number of objective
function evaluations

11 - 15 IIN I * only final results printed
2 . results printed after each line

search
3 * results printed after each objective

function evaluation

16- 20 ICON I * convergence based on parameter
values

2 * convergence based on function
values

3 * convergence based on gradient
values

21 - 25 1CUB = 0 * strict line search convergence
criterion used

1 normal line search convergence
criterion used

26 - 30 IHES = 0 * Hessian conditioning not performed
I * Hessian conditioning performed

31 - 35 NHES number of non-zero values to be entered
for the initial inverse Hessian matrix. If
NHES = 0, the inverse Hessian will
initially be set to the identity matrix

36- 40 ISCA 0 * parameter scaling not performed
I * parameter scaling performed

41 - 45 NSLN 0 * no initial estimates computed
I * initial estimates computed for

either R or R
2 * initial eshmatef computed for

both R c and Re
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IX. Convergence Specifications Card:

1st Card (7E10.3

Columns

1 - 10 EPFA : convergence criterion associated with the
objective function, f. If ICON = 2 (see
section VIi), the search will be ter-
minated when the k-th line search has
failed to reduce f by an appreciable
amount:

EPFA > (fk-l-fk)

11 - 20 EPSA : convergence criterion associated with the
gradient of the objective function, g. If
ICON = 3 (see section VIII), the search
will be terminated when the slope of the
k-th computed search direction is suit-
ably small:

EPSA > (-gTHkg k)

21 - 30 C1 value of the line search exclusion para-
meter ct A value of o 0.9 is recom-
mended

31 - 40 C2 value of the line search exclusion para-
meter p. A value in the range 0.0001
< p < 0.01 is suggested

41 - 50 C3 value of the bracket check parameter
T. A value of = 0.1 is recommended

31 - 60 EPXL : line search exit criterion associated with
the parameters x. A value in the range
0.001 < EPXL < 0.01 is suggested

61 - 70 EPFL : global fail-safe exit criterion associated
with the objective function f

71 - 75 NFLX : maximum allowable number of objective
function evaluations that may be made

*l before the fail-safe termination criterion
(based on EPFL) is invoked

31
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X. Fite-Difference Specifications Card:

1st Card (5E10.3)
Columns

I - 10 ETAF relative error associated with the
computation of objective function values

11 - 20 ETAX relative error associated with the re-
presentation of parameter values in a
finite word-length machine

21 - 30 DMIN smallest differencing interval permitted
in calculating first derivatives by finite
differences

31 - 40 VDER maximum permissible relative truncation
error. If the estimated error is greater
than FDER, central rather than forward
differences are used to compute the
gradient. A value in the range 0.0001
< FDER < 0.01 is suggested

41 - 50 SFUN scaling factor for the objective function.
The optimization code seeks the
minimum of SFUN-f. By default, SFUN
= 1.0

XL Initial Estimates Card:

1st Cards (SEIO.3)

Use as many cards as necessary to enter initial estimates for the
NDIM parameters whose optimal values are being sought. For
typical values, see Table 2.3

XUl. Lower Bounds Card:

1st Cards (SE10.3):

Use as many cards as necessary to specify the lower bounds (I. <
x.) associated with each of the NDIM parameters whose optihial
vklues are being sought. For typical values, see Table 2.3

Xm. Upper Bounds Cards

1st Cards (8E10.3):

Use as many cards as necessary to specify the upper bounds (x. <
u.) associated with each of the NDIM parameters whose optinal
vklues are being sought. For typical values, see Table 2.3
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WIV. Initial Differencing Intervals Card:

1st Cards (SE1O.3)

Use as many cards as necessary to specify the initial finite
difference differencing intervals associated with each of the NDIM
parameters whose optimal values are being sought. For typical
values, see Table 2.3

XV. Scaling Factors Card: (Include efr if ISCA = I in section VI). t

1st Card (3EIO.3)-

Use as many cards as necessary to specify the scaling factors
associated with each of the NDIM parameters whose optimal values
are being sought

XVL Convergence specifications Card: (include y if ICON I in section

1st Card (SE10.3):

Use as many cards as necessary to specify the convergence criteria
associated with the parameters x. If ICON = 1, the search will
be terminated when the kth line search has established the location
of the minimum to a sufficiently high degree of accuracy:

C > Ixi k  - ik 6=1, NDIM)

33
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XVMI initiad Inv" 9 Hesian pecification Card* (Include onl H NHES >0 in
section

1st Card (4 (215, E10.))

Columns

I - 5 IR : row number

6 - 10 IC : column number

11 - 20 H13~ value of the (OR, IC~th compoent of
initial inverse Hessian matrix

21 - 80 ** : repeat entries for columns 1-20 as
described above (in the identical format)
until all NHES components have been
specified. Continue on a 2nd card if
necessary

XVMI. Analytic Intiai Estimates Card: (include 2!2 if NSLN> 0 in section
VlIM

The following card must be repeated NSLN times - once for each
initial estimate required:

1st Card (210.3. L5):

Columns

I - 10 1. slope of the isotropic consolidation line
in e -In p space

11 - 20 ic : slope of the swel/recompression line in
e - In p space

21 - 30 PION : initial value of the mean normal
effective stress p* = p0

31 4 0 PFAL : critical value of the mean normal
effective stress p = pf

41 -50 R1 initial estimate for the surf ace shape
parameter R. By default, RI 2.50

51-55 KR I R =Rc Is assumed
2 R R cIs assumed

For most analyses, ISCA =0 and NHES =0, and therefore input cards
XV and XVII will normally be omitted.
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TABLE 2.1

Correspondence Btween Parameter Type ad Property Nwnber

Property Parameter Property Parmnewe

Ntanber Type Ntxnber Type

1 11 T

2 K 12 RIe R

3C 13 Ae /Ac

4 m /M 14 C
e r

5 G 15 S

6 r 16 h

9 a 18 h e/heC

9 R 19 rn/rnC

10 A

TABLE 2.2

Correspondence Between Relation Type and Relation Nwxnber

Relation Relation

Nwnber Type

I q vs p'

2 q vs

3 1 v

4 u vs E

3 C SI

36



--•. . .. . : + + . : i.; _ -_ . : 1 2?

TABLE 2.3

* -Typical Parameter Values, Bounds and Initial Differencing Intervals

Typical Typical Typical Initial
Parameter Typical Lower Upper Differencing

Nmber Parameter Value Bound Bound Interval

SI 0.20 0.10 0.40 0.02

2 K 0.04 0.02 0.08 0.004

3 M 1.00 0.75 1.25 0.10

4 M /M 1.00 0.75 1.25 0.05

5 G 2000 1000 10000 200

7 PP Pa 0.25"pa Pa -0.25-pa

9 Rc  2.50 2.00 3.00 0.05

10 A 0.10 0.03 0.20 0.01

I I T 0.10 0.05 0.15 0.05

12 Re/R c  1.00 0.75 1.25 0.02

13 A e/A 1.00 0.50 2.00 0.10

14 c 0.50 0.00 0.75 0.05

15 s 1.00 1.00 2.00 0.50

16 h 0.25 0.05 2.00 0.05Ic

17 mc 0.50 0.20 1.00 0.50
18 he/h 1.00 0.50 4.00 0.20

e C

19 me /mc  1.00 0.50 4.00 1.00
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UIL EXPLANATORY NOTES AND INPUT RECOMMENDATIONS

3.1) kq u SectionsI ad

The program MODCAL may be used to accomplish model calibration

k3OPT=I), or to generate model predictions (JRUN=I), or both. If the code is

sed to generate model predictions, plots of the experimentally observed and

theoretically comouted response relations may be requested (3PLT=I) to

supplement the numerical output data.

The constants KRSL and KNRM partially define the manner by which the

objective function is formed (see section 1.2). If model calibration is not

required, the values of KRSL, KNRM, NOPT and KOPT(II) may be omitted. The

absolute-Euclidean measure of error (KRSL=O and KNRM=O) has been found to

produce the most easily minimized objective function. Hence, in most applications

this measure should be employed. The vertical measure of error (KRSL=I) should

only be used if all of the response relations included in the calibration data

base (see section 3.4) are either monotonically increasing or monotonically

decreasing with respect to their x-values or abscissae. For example, the vertical

measure could be used with curves a-g of Figure 3.1, but not with curve h

(since this relation first increases and then decreases with respect to its

x-coordinates). Thus, the vertical measure should normally not be used if q vs

p* relations are included in the calibration data base.

The NOPT parameters to be established by optimization are identified by

entering their respective "property numbers" in the KOPT(li) array. The

correspondence between parameter type and property number is defined in Table

2.1. As may be seen, the ordering scheme used in Table 2.1 is identical to

that employed in input section i1; that is, X is property 1, r is property 2, and

so forth.
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7 1i 3.2) Inpt Section IM

The values of the required material and model properties are specified

in input section III. A more detailed description of the various parameters,

including an examination of their qualitative and quantitative influence on the

predicted material response, is presented by DeNatale (1982). If model calibration

is required, it is not necessary to enter estimates for those parameters whose

optimal values are being sought.

3.3) Input Sections IV and V

As mentioned earlier in section 1.4, the code relies on two subroutines

-EVAL and CLAY - to generate the required model predictions. These

predictions can be acquired by means of either a "conventional" (KIND=1) or a

"reformulated' (KIND=O) analysis. The reformulated analysis is a modification

of the mixed finite element procedure developed by Herrmann (196%5) for

incompressible and nearly incompressible solids. In it, the six strain components

together with the pore water pressure represent the "mixed" set of primary

dependent variables. When both the conventional and reformulated analyses

converge, they yield identical results. However, for certain undrained and

near-failure conditions the reformulated analysis may successfully converge, while

the conventional analysis may not. Additional details of the two formulations

are provided by Herrmann et al (1981, 1982).

Both types of analyses use the method of successive approximation, and

acceleration factors can be applied to the stress and strain vectors to increase

the rate of convergence. The acceleration factors are calculated by means of

the Aitken's V2 formula (see, for example, Isaacson and Keller (1966)), and the

maximum and minimum factor values are controlled by the constant CNFR. By

default, CNFR=0.3, and if CNFR=l.0, acceleration factors will not be used.

40
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Finally, the analyses may be accomplished using either engineering

II (LARG=O) or natural (LARG=I) strains. This option was introduced solely to

facilitate the comparison of model predictions with experimental observations

reported in either format.

In order to simulate a given experimental test ITST, the applied loading

history must be specified in piecewise form by entering descriptions of its NSEG

distinct "history segments." A particular history segment is defined by the

values of the six stress and/or strain components (LTYP i and VALUi; i=l,6)

which act on the material element at the end of that segment. Within the

program, the segment is further subdivided into NINC separate increments, and

iteration is performed within each increment. The relative size of the increments

which make up a given history segment is controlled by the constant SRAT. By

default SRAT=I.0, and the segment is then subdivided into NINC equal sized

increments. It, in any particular increment, convergence (as defined by the

constant ERMX) is not achieved within ITMX iterations, an appropriate message

is printed and the analysis will then stop. By default, ERMX=0.0l and ITMX=10.

A conventional monotonic triaxial loading could possibly be described with

as few as one history segment. For example, a strain-controlled test which

began at an all-around confining stress of a 3c a 0 and ended, after 30 equal

sized steps, at an axial strain of c,=15%, could be simulated by specifying:

x O

y 0

Cz 0.15

Yxy = Yxz = Yyz 0.0

NINC = 30

SRAT = 1.0
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There are three situations where it would be necessary to use more than one

segment to describe a particular loading history; namely:

i) if one or more of the six loading components changes during the

test from a stress quantity to a strain quantity (or vice versa);

ii) if the loading history cannot be subdivided into increments of the

desired length through the use of the parameters NINC and SRAT,

alone; or,

iii) if a cyclic loading history must be described.

For example, a minimum of two segments would be required if the triaxial

specimen previously described was first loaded to an axial strain of cz=l5% and

then unloaded to its initial stress state a3c = a in 10 equal sized steps:

(i) ax  oo  (i&) ax  o

ay =a o  ay=o
Cry COy

z 0. 15 az  190
YXY -fz YYZ 0. 0 xy YXz YY =0. 0

NINC = 30 NINC = 10

i AT = 1.0 SRAT = 1.0

Or, if only loading was involved, but it was desired to use increments of &cz

= 0.2% for axial strains of Cz < 2% and increments of Acz = 1.0% for axial

strains of e > 2%, a minimum of two segments would again be required:

(i) a =a (ii) x =a

x o x
ar a a 0a

y 0 y 0

z = 0.02 Cz = 0.15

lxy . z z= 0 0 oxY = YxzYZ 0 .0

NINC = 10 NINC = 13

SRAT = 1.0 SRAT = 1.0
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Careful thought should be given to the total number of increments used

to represent a particular loading history. The importance of increment size in

EVAL-directed analyses is analogous to the significance of grid size in a general

finite element analysis; that is, the predicted material response may, to some

extent, be influenced by the size of the increments into which the applied

loading history is subdivided. If too few increments are used, convergence may

not occur, or the program may converge to an "incorrect" state of stress and/or

strain. If too many increments are used, the analysis would become unnecessarily

expensive. Note that the cost of a given analysis is controlled not by the

number of history segments or loading increments used, but, rather, by the total

number of iterations required, all increments considered. Thus, an analysis which

uses a greater number of increments may actually be more economical, if it

can be completed in a lesser total number of iterations.

Typically, from 20-40 increments are sufficient to describe a particular

monotonic loading. In general, undrained analyses require smaller increments

than drained analyses, and the unloading portions of a test can normally be

described with larger increments than the loading segments. The code is designed

to simulate tests which begin at a hydrostatic state of stress (J=O), and

relatively small increments should be used if and when the stress state first

moves off the hydrostatic (II) axis. An automated increment generation scheme

is currently under development as part of the ongoing research with the Bounding

Surface model. However, since the scheme has not yet been incorporated into

the computer code, some user-initiated checks should first be made with respect

to optimal increment size, before proceeding with any potentially expensive

analyses.

The parameters PLIM and TLIM are the second group of constants

associated with the formation of the objective function. Their roles can perhaps
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L best be understood by considering the expression for residuals used In the code.

The unweighted residual Rk corresponding to experimental observation k is given

by:

rk Y

where:

If (- > PLM), Yl Yk
yp

If L PIM
yp

y

Yr

:.!'" ~if (Jr < TLIF) Y :Y

.If (-r LIM, Y2 Yr "TLIM

and where (refer also to Figure 3.2):

rk = the normalized distance between the kth experimental

observation and the prediction curve;

Yk= the y-value (or ordinate) of the kth experimental obser-

vation;

yp the maximum absolute experimentally observed y-value,

all points of the given relation considers~d;

"y r the maximum absolute experimentally observed y-value,

all relations of the given type considered;

yl = the base y-value for residual scaling for all points of

a given relation; and,

Y2 the base y-value for residual scaling for all relations

of a given type.
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As pointed out earlier in section 1.2, before an objective function can be formed,

the user must define to the code what is meant by "equal" errors. If equality

is based on relative errors throughout, then:

PLIM = 0

TLIM = 0

" Yl =Yk

Y2 =Yp

rk yp rk;' ~ k = k p=Yk

and therefore the residual Rk will be the same at two points A and B only if

there are identical relative errors (rk/yk) at A and B. If equality is based on

absolute errors throughout, then:

PLIM = I

TLIM = I

Yl = Y
SY2 = Yr

rk p rk
= ,-'" 'r= '-

and therefore the residual Rk will be the same at two points A and B only if

there are identical absolute errors rk at A and B. Additionally, equality could

be based on relative errors within a given relation (PLIM=0) but absolute errors

between relations of a given kind (TLIM=I), or vice versa (PLIM=l and TLIM=0),

or anywhere in between (0 < PLIM < 1 and 0 < TLIM < 1). By default,

PLIM=0.01 and TLIM=0.01.
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The most serious argument against the use of relative errors is that small

deviations at low magnitude observations can produce extremely large contribu-

tions to the total computed overall error. In other words, as Yk approaches

. .zero, the quantity (rk/yk) approaches infinity, regardless of the absolute error

rk. The constants PLIM and TLIM permit the use of relative errors over most

of the data base, while preventing those observations whose magnitudes are

relatively small from unduly influencing the computed overall "goodness" of the

model predictions. The net effect of a given combination of PLIM and TLIM

could probably be duplicated through a judiciously chosen set of weighting factors

in input section VI (see section 3.4). However, weighting factors were introduced

for a distinctly different reason, as will be considered in section 3.4.

3.4) input Sections VI and V1

The type of plots associated with a given test ITST are identified by

entering their respective "relation numbers" as KPLT. The correspondence

between plot type and relation number is defined in Table 2.2. As may be seen,

a q vs p0 plot is assigned a relation number of KPLT=1, and so forth.

If NEXPAO, the individual data points associated with the experimental

response relation KPLT must be entered in the same order in which they were

originally observed, and not in some random fashion. In other words, the first

point specified must correspond to the initial experimental measurement, while

the last point entered must represent the final observation. This ordering scheme

must hold for both the 3rd and 4th card group entries of input section VI. If

NEXP=O, the 3rd and 4th cards associated with the particular relation KPLT

must be omitted.

The weighting factors WTST, WPLT and WPNT are the third and final

group of constants associated with the formation of the objective function. Like

KRSL and KNRM (see section 3.1) and PLIM and TLIM (see section 3.3), their
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values may be omitted if model calibration is not required. By default, all

tests, relations and Individual observations are weighted equally. However,

different weights may be assigned to specific components of the data base if

it is felt that certain tests, relations or observations are more reliable or

representative than others, or if it is necessary to have the final model predictions

fit some data more closely than others. Thus, by assigning a weight of WPNT=O

to a given experimental observation, it becomes possible to include that point

in the calibration data base, without it Influencing the computed value of the

objective function.

If model calibration is required, the content of the calibration data base

should be complete and diverse enough to permit each of the unknown parameters

to be uniquely determined. The recommended calibration data base is described

in detail in section 1.5, and the consequences of an inadequate or incomplete

data base are considered in section 1.6.

3.5) kIWut Sections ViI md iX

As mentioned previously in section 1.3, the line search strategy is an

integral part of the global optimization routine. The basic structure of the line

search algorithm is illustrated in Figure 3.3. As may be seen, when the strict

line search termination criterion is employed (ICUB=0), an additional situation

; - is introduced wherein cubic interpolation is used to reduce the size of the search

bracket. The primary advantage of this strict termination criterion is that it

permits exact line searches to be carried out in the limit as a approaches zero.

However, in most practical problems inexact line searches (say a 2 0.7-0.9)

normally result in a lesser total number of objective function evaluations. Hence,

provided that a is greater than about 0.7, ICUB=0 and ICUB=I analyses will

generally yield equally efficient results.
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The constants Cl, C2 and C3 represent the line search parameters a, p

and T, respectively. As indicated in Figure 3.3, the parameters a and p control

the degree of accuracy to which a particular line search is carried out; observe

that as o increases and p decreases, the line search becomes less and less exact.

The parameter T prevents evaluations from being made at points which are

trivially close to the boundaries of the current search bracket. By default, a

- 0.90, p = 0.0001 and T = 0.10.

Normally, the line search terminates because the exit criterion shown in

Figure 3.3 has been satisfied. However, near the solution (that is, the minimum)

round-off errors may become significant, and it is sometimes more efficient and

reliable to use parameter values as the exit criterion. Thus, in the code, the

line search is terminated whenever the predicted location of the optimum is no

longer changing by a significant amount. Mathematically, this additional exit

criterion is given by:

i >(i = 1, NDIM)

EPXL >

where x' and x' represent the values of parameter x1 at two consecutive

4 objective function evaluations. By default, EPXL=0.O01.

There are a variety of criteria that may be used to test for global

convergence and which may therefore serve as a basis for terminating the

optimization search. Three of the most commonly used and effective criteria

are:

i) tased on parameter values (ICON=l),

4 ik I - xk
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ii) based on function values (ICON=2),

EPFA > (fk-I" fk)

iii) based on gradient values (ICON=3),

>- TEPSA ' I-gkHkgkI

where the subscripts k-I and k refer to the value of the quantity at the

completion of the k-Ith and kth line search, respectively.

The use of criterion (i) ensures that the location of the optimum has been

determined to within the specified accuracy, but does not guarantee that the

smallest function value has been found. The use of criterion (ii) requires the

user to identify on input the maximum absolute error that can be tolerated with

respect to the magnitude of the objective function at the optimum. The use

of criterion (iii) may perhaps provide the best results; when the gradient is small

in the next computed search direction, any additional searches in that direction

should yield little or no reduction in the value of the objective function.

Regardless of which of the above three global termination criteria is used,

a fail-safe exit condition is also incorporated, to prevent the algorithm from

continuing when no substantial progress is being made. If at some point in the

search

EPFL > (fk- f )

and this condition continues to be satisfied for the next NFLX objective function

evaluations, the search is terminated, regardless of ICON. This fail-safe exit

*i condition was introduced to prevent unnecessary function evaluations from being

made when either parameter values (ICON=l) or gradient values (ICON=3) are

used as the convergence criterion, but where this criterion is, for one reason

*" or another, too strict to ever be invoked. If function values are used as the

convergence criterion (ICON=2), the user should set EPFA=EPFL.
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The codes IHES and ISCA (and the constant SFUN of input section X)

are used to select options which may improve the conditioning of the problem

and therefore the efficiency of the search. If IHES=O, the initial inverse Hessian

will be scaled prior to the first update. This scaling procedure was originally

suggested by Shanno and Phua (1978) as a means for reducing the cancellation

errors which may occur when the terms in the updating formula (see section

1.3) are of significantly different magnitudes. However, the results of the

procedure have, in practice, been rather mixed (see Shanno and Phua (1978)).

For small to medium sized problems (say NDIM < 10 to 15), such as those

normally encountered in model calibration, it is probably best to set IHES=O,

and thereby prevent scaling. For larger problems, it may be possible to improve

the algorithm's performance by setting IHES=I.

When the typical values of the constitutive parameters are of vastly

different magnitudes (such as a shear modulus of G=2500 psi, versus a projection

point of c=0.25), the Quasi-Newton strategy may perform quite poorly as a result

of badly scaled x, g and 6 vectors (see section 1.3). It is often possible, though,

to improve the routine's performance by making the variable transformation

y = Dx

and minimize, instead, f [x(y)] = f(y), where D is a diagonal matrix consisting

of NDIM scaling factors. However, since the program already employs a

trigonometric variable transformation to enable the imposition of upper and

lower bounds (see section 1.3), which generally results in a very well scaled

problem, no additional scaling should normally be required (ISCA=O).

Finally, it is sometimes possible to improve the algorithm's performance

by minimizing a scalar multiple of the objective function (SFUN * f), rather

than the function itself. This phenomenon again appears to be due entirely to
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the presence of round-off errors. However, since the optimal value of the scalar

SFUN is extremely dependent on the specific problem being considered, there

is normally no reason to initially invoke the function scaling option (and thus,

by default, SFUN=1.0).

3.6) bpt Section X

As mentioned previously in section 1.3, gradients are evaluated by means

of finite differences, in accordance with the strategy originally suggested by

Stewart (1%7). To enable this strategy to be efficiently carried out, certain

problem and machine dependent tolerance information must be supplied.

On a finite word length machine, a given property value xi cannot be

represented with infinite precision, but, rather, must be stored as some truncated

approximation xi, where:

x1  (1 + )x i  and C < ETAX

Similarly, instead of providing a perfectly accurate value of the objective function

f, the algorithm can only yield an approximation f, where:

f*= (1 + C2 )f and £2 < ETAF

The user must further specifiy the maximum truncation error that can be

tolerated in the forward difference representation of derivatives, FDER. The

constant FDER thus permits the code to identify when it is necessary to replace

the forward difference formula with the more expensive central difference

representation. Finally, in order to prevent the computed differencing intervals

from becoming too small to yield a representative gradient, a lower limit on

the size of the intervals must also be specified by means of the constant DMIN.

Since the interval size check is made after the trigonometric variable transforma-
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Ition discussed in section 1.3 has been performed, this single bound DMIN can

be applied to all components of the gradient vector and still produce the desired

effect. By default, ETAX=10 4 , ETAF=10 4 , FDER=I0 4 and DMIN=0.005.

3.7) inu Uctions XI Tkwagh XVI

The ordering of the specifications in input sections XI through XVI should

be consistent with that used in input section 11 to identify the unknown constitutive

parameters. For example, if a four-dimensional (NDIM=4) analysis was performed

to establish the optimal values of Rc , Ac c and hc (having property numbers

of 9, 10, 15 and 16, respectively, as shown in Table 2.1), and if the specification

of input section 1 was made in the order:

KOPT (1) x 9
KOPT (2) 10

KOPT (3) = 13

KOPT (4) = 16

then the initial estimate for R should occupy the first position (columns 1-10)

of input section XI, the lower bound for c should occupy the third position

(columns 21-30) of input section Xl, and so forth. For convenience, typical

starting estimates and lower and upper bounds are listed in Table 2.3.

The initial differencing intervals of input section XIV should be large

enough to yield an appreciable change in the objective function, but not so large

that the local geometry of the function is misrepresented. As a rule of thumb,

the size of the initial differencing intervals should be about 5-10% as great as

either (1) the Initial estimate for the corresponding parameter, or (ii) the

difference between the specified upper and lower bounds. For convenience,

suggested Interval sizes are given In Table 2.3.
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3.3) Input Section XVU

By default, the initial inverse Hessian matrix is set to H I (see section

1.3). However, if the objective functions curvature at the starting location is

known, an improved initial estimate for H could be specified by setting NHES

> 0 in section VIII and entering the necessary second derivative information in

section XVII. Since the initial inverse Hessian must be both symmetric and

positive-definite, it is only necessary to enter the non-zero components on the

diagonal and in the upper (or lower) triangular block.

3.9) Input Section XVUI

Finally, if either Rc or Re (or both) are among the parameters whose

optimal values are being sought, improvej in'tial estimates can be acquired by

setting NSLN * 0 in section VIII and entering the necessary data in section

XVIII. These improved estimates are generated internally, by identifying the

roots of the equation which defines the undrained stress path of a normally

consolidated soil:

F(R)=0=2 - (28)(z - 2)R+ 2R -R 3

where:

Pf

and where X and K represent the slopes of the material's isotropic consolidation

and sweU/recompression curves in e - In p" space, and p and p denote the

initial and critical (or "failure") values of the mean normal effective stress p',

as indicated in Figure 3.4.
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The values of R which satisfy the above cubic equation are obtained

through the use of a modified-Newton root finding scheme. The structure of

* the search algorithm is as follows:

i) estimate the location of the root R

f(R).- i) com pute u(R) = - 7M

'-" f(R)f '* "(R)
iii) compute uA(R) = 1- [ IR 2

n+l n u(R) n niv) compute R =R -- = R + 6

v) if C > 16 n then stop, otherwise repeat steps (ii)-(iv)

Although a cubic equation, in general, possesses three roots, the equation

presented above has normally been found to have only a single real root in the

approximate range 1.5 < R < 3.5 (where the final value of R should nearly

always lie). Hence, the internally computed estimate for R should typically

lead to a rather good correlation between the observed and predicted responses

associated with a normally consolidated soil. If improved estimates for both

Rc and Re are required (NSLN 2), the specifications pertaining to Rc must

be entered first.

7'7
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IV. MODIFYING THE CODE

The program MODCAL incorporates 29 separate subroutines, each of which

performs a linited and specific task. This modular form gives the code maximum

generality and extreme versatility. For example, if, in the future, another

optimization strategy is found to be more effective than the Quasi-Newton

procedure presently employed, the associated subroutines may be readily replaced,

without having to additionally modify the other components of the code. Or,

if it was desired to use boundary-value measurements to calibrate the material

model, rather than homogeneous test results, subroutine EVAL could easily be

replaced with an appropriate multi-element finite element program (such as the

nonlinear two-dimensional code NTD developed by Herrmann et a (1982b)).

Finally, if it was desired to adopt the present automated calibration strategy

to another constitutive formulation, subroutines CLAY and BOUNDS could rapidly

be replaced with the appropriate material model. The precise procedure for

linking a new materials subroutine to the driving subroutine EVAL Is discussed

*in detail by Herrmann et al (1910, 1981).

The code's modular structure also enables It to be readily implemented

on limited core memory minicomputers, such as the LSI-11/23. The presence

of many small subroutines facilitates the use of "overlays", wherein the various

subroutines are swapped into and out of core as they are needed. The use of

overlays therefore often makes it possible to accommodate large programs which

would otherwise exceed the core memory capacity of a small machine.

Alternatively, if the code is to be used only in a limited form (such as for

performing model calibration only, but without plotting), the unnecessary

subroutines may simply be removed, thus reducing the size of the program.

In order to facilitate the use of these various options, and to enable the

user to more clearly Identify where particular modifications may be required,
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a listing of the 29 subroutines and their respective functions will now be

presented

Subroutine Function

1. MODCAL. the main driving program for the Bounding Surface

soil plasticity model calibration and prediction code

2. DATAIN: directs the reading of the required input information

and control specifications

3. FNDMAX: establishes the maxima of the specified experimental

observations

4. EVAL directs the single-element, incremental-iterative finite

element analysis which generates the set of model

predictions for the specified homogeneous test condi-

tions

". AITKEN: computes the appropriate Aitken's acceleration factors

6. PLTCHK: checks whether a given experimentally observed or

theoretically predicted response relation is to be

plotted

7. 3SDPLT: directs the plotting of the experimental observations

and model predictions

. LSHIFT: adjusts the minimum and maximum axes values, as

directed by JSDPLT

9. BORDER: produces the plot headings and axes lables, as directed

by 3SDPLT

10. RSDUAM. directs the evaluation of the weighted residuals and

forms the governing objective function
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Subroutine Function

11. EUCLIDk computes the minimum Euclidean distance between

the experimental observation and the prediction curve

12. VRTIClU computes the minimum vertical distance between the

experimental observation and the prediction curve

13. BSMOPT: directs the global search component of the model

calibration algorithm

l. CALDAT: directs the reading of all additional specifications

needed for model calibration

15. NEWTON: computes improved starting estimates for the surface

shape parameters Rc and/or Re

16. SEARCH: directs the line search component of the minimization

algorithm

17. BFGSUI. computes the inverse Hessian matrix H, in accordance

with the BFGS (Broyden-Fletcher-Goldfarb-Shanno)

updating formula

IL CONCHK: checks whether the optimization algorithm has

converged to the minimum

- 19. PRNOUT= directs the printing of the minimization search results

20. DTPROD: computes the scalar (dot) product of two vectors vT v

21. VYPROD: computes the product of the vector-vector operation

22. MVPROD computes the product of the matrix-vector operation

Mv

23. MMPROD: computes the product of the matrix-matrix operation

MM
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Subroutine Fiunction

24. FFUN: computes the value of the objective function

25. GFUN: computes the gradient of the objective function

26. OPEN: opens the required input and output files

27. EXIT: closes the required input and output files

28. CLAY: contains the numerical implementation of the govern-

ing constitutive equations, and thus provides the appro-

priate theoretical material response to the given stress

and/or strain increment, as supplied by EVAL

29. BOUNDS: evaluates the relationship of the stress state to the

bounding surface, as required by CLAY.

.1

1 61



V. EXPANDING THE CAPABILITIES OF THE CODE

The program MODCAL employs a nuimber of 1-, 2- and 3-dimensional

arrays. In order to minimize storage requirements, or to enable the code to

accommodate larger problems, it may at times be necessary to adjust the

dimensions of the size-dependent arrays. The list which follows describes the

various size-dependent arrays, dimensioned in terms of a few key constants:

in COMMON BLKA:-

KOPT (NDIM)

in COMMON BLKB:

WI (NTST)

W2 (NTST, NPLT)

W3 (NTST, NPLT, NEXP)

in COMMON BLKC:

NSEG (NTST)

PRP2 (NTST, '4)

LTYP (NTST, NSEG, 7)

VALU (NTST, NSEG, 7)

in COMMON BLKD-

NPLT (NTST)

KPLT (NTST, NPLT)

NEXP (NTST, NPLT)

XV (NTST, NPLT, NEXP)

YV (NTST, NPLT, NEXP)

PINC (NINC + 19 N VAR)

in COMMON BLKE:

XMXR (NRLN)

YUXR (NRLN)
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XMXP (NTST, NPLT)

YUXP (NTST, NPLT)

in COMMON BLK3:

XI (NDIM)

X2 (NDIM)

in COMMON BLK4:

XE (NDIM)

in COMMON BLK5:.

DI (NDIM)

D2 (NDIM)

OG(N4M
DG (NDIM)

DX (NDIM)

G2 (NDIM)

HI (NDIM, DM

HI (NOIM, NDIM)

in COMMON BLK7:

SF (NDIM)

XL (NDIM)

in M AIN:

XV (NDIM)

0 in subroutine EVAL:

XOPT (NDIM)

in siubroutirT PLTCHK:

IPLT (NRLN)
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in subroutine JSDPLT:

IICEX (NEXP)

ICEY (NEXP)

ICPX (NINC + 1)

ICPY (NINC + 1)

in subroutines BSMOPT, FFUN and GFUN:

XX (NDIM)

in subroutine SEARCH:

DM (NDIM)

XM (NDIM)

in subroutine BFGSUP:

SV (NDIM)

SM (NDIM, NDIM)

in subroutine CONCHK:

XV (NDIM)

in subroutine PRNOUT:

XS (NDIM)

in subroutines DTPROD, VVPROD, MVPROD and MMPROD:

VI (NDIM)

V2 (NDIM)

V3 (NDIM, NDIM)

V4 (NDIM, NDIM)

where, by definition:

NDIM > number of parameters whose optimal values are to be

established by optimization;

NTST a number of distinct experimental tests;

NPLT ) maximum number of response relations associated with a

single experimental test;
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NEXP > maximum number of experimental observations associated

with a single response relation;

NSEG maximum number of history segments associated with a single

prescribed loading history;

NINC maximum number of increments into which a single prescribed

loading history has been subdivided;

NVAR number of different response parameters (such as q, p', u,

SI and cv) used to define the results of the various

experimental tests; and,

NRLN >, number of different response relations (such as q vs p*, q

vs el, p" vs E1, u vs 1 and Ev vs 1 used to define the

results of the various experimental tests.

The program is currently set up to accommodate five different response

relations (NRLN = 5), which, as a group, are fully defined by means of five

distinct response parameters (NVAR 5). If, for some reason, it becomes

necessary to use relations and/or parameters that are different from those listed

above to characterize the results of a given experimental test, minor changes

must be made to the coding which handles the storage and retrieval of the

model predictions. These coding changes are quite straightforward, and are

restricted only to subroutines EVAL, PLTCHK and RSDUAL. The remaining

dimensions are currently set at NDIM = 17, NTST = 6, NPLT = 3, NEXP = 20,

NSEG = 4 and NINC = 60.
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- "XVII. EXAMPLE 1: MODEL CALIBRATION

To provide a first example of the code's capabilities, MODCAL has been

used to assist in the calibration of the Bounding Surface plasticity model for a

particular cohesive soil. As may be seen from the input and output files which

follow, the program was run to establish the optimal values of the five model

parameters G, Rc , Ac, c and h for the case of the laboratory prepared Kaolin

employed by 3afroudi (1983) (see also Herrmann et al (1981b)). The specified

calibration data base includes the results of conventional undrained triaxial

compression tests (in the form of the experimentally observed q vs cl, p'* vs E1

and u vs c1 responses) performed on specimens at overconsolidation ratios of

OCR = 1, 2 and 6. All experimental observations are weighted equally, and the

objective function is formed by using the absolute-Euclidean measure of error

(KNRM=0 and KRSL=0), together with the values PLIM = 0.01 and TLIM 0.20.
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EXAMPLE I: MODEL CALI RATION. JAFROUDI (1983) KADLIN -- CR=1i2,6.
3 1 0 0 0 0 5 5 9 10 14 16
0.!30 0.018 1.180 0.737 5000.00 1000000.0 101.35 101.35

2.400 0.100 0.050 1.000 1.000 0.400 1.000
0.500 0.500 1.000 1.000
1 0.68 3922.20 392.20 1.00
2 0.69 392.20 196.10 2.00
3 0.72 392.20 65.37 6.00
0 10 0 1.00 0.01 0.01 0.20
1 2

0 392.2 0 392.2 1 0.02 1 1 1 20 1.00

0 392.2 0 392.2 1 0.12 1 1 1 20 1.00
2 2

0 196.1 0 196.1 1 0.02 1 1 1 20 1.00

0 196.1 0 196.1 1 0,12 1 1 1 20 1.00
3 2

10 10 65.4 0 65.4 1 0.02 1 1 1 20 1.00
S0 65.4 0 65.4 1 0.12 1. 1 1 20 1.00

1 3
2 15 3 15 4 15

0.0 65.0 105.0 155.0 176.0 187.0 202.0 208.0
214.0 216.0 217.0 217.0 215.0 212.0 206.0

0.00 0.12 0.25 0.50 0.75 1.00 1.50 2.00
3.00 4.00 5.00 6.00 8.00 10.00 12.00

392.2 383.9 362.2 329.9 304.9 2184.5 256.5 236,5
216.5 204.2 196.5 191.5 194.9 179.9 174.9

0.00 0.12 0.25 0.50 0.n5 1.00 1.50 2.00
3.00 4.00 5.00 6.00 9.00 10.00 12.00
0.0 30.0 65.0 114.0 146.0 170.0 203.0 225.)

247.) 260.0 268.0 273.0 279.0 283.0 286.0

(,oc 0,1!2 0.25 0.50 0.75 1.00 1.50 2.00
3.00 4. 00 5.00 6.00 9.00 10.00 12.00

0.0 50.0 70.0 13t.0 155.0 169.0 180.0 187.0

195.0 199.0 202.0 202.0 202.0 200.0 198.0
0.00 0.12 0.25 0.50 0.75 1.00 1.50 2.00
3.00 4.00 5.00 6.00 8.00 10.00 12.00

196.1 1.97.8 199.0 206.1 203.8 201.4 194.1 189.4

!11 175.4 171.4 169.4 165.4 161.1 160.1
0.00 0.12 0.25 0.50 0.75 1.00 1.50 2.00
3.00 4.00 5.00 6.00 8.00 10.00 12,00

0.0 15.0 23.0 35.0 44.0 51.0 62.0 69.0

80.0 87,0 92.0 94.0 98.0 100,0 102.0

0.00 0.12 0.25 0.50 0.15 1.00 1.50 2.00
3.00 4.00 5.00 6.00 8.00 10.00 12.00

3 3

2 15 3 15 4 15
0.0 25.0 52.0 80.0 96.0 109.0 125.0 135.0

148.0 155.0 159.0 161.0 163.0 162.0 159.0

. 0.00 0.12 0.25 0.50 0.75 1.00 1.50 2.00
3.00 4.00 5.00 6.00 8.00 10.00 12.00

65.4 71.' 79.7 90.0 97.4 102.7 110.0 116.4

122.7 128.0 130.4 131.0 131.7 131.4 130.4
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0.00 0.12 0.25 0.50 0.75 1600 1.50 2.00
3.00 4.00 5.00 6.00 8.00 10.00 12.00
0.0 2.0 3.0 2.0 0.0 -1.0 -3.0 -6.0

-8.0 -11.0 -12.0 -12.0 -12.0 -12.0 -12.0
0.00 0.12 0.5 0.50 0.75 1.00 1.50 2.00
3.00 4.00 5.00 6.00 8.00 10.00 12.00

5 400 2 3 0 0 0 0 1
1,00E-02 1.OOE-0 9.OCE-01 1.00E-04 1.00E-01 1,OOE-03 I.OOE-04 100
I.OE-04 1.OOE-09 5.00E-03 1.OOE-04 I.OOE+00
5000.00 2.40 0,10 0.40 0.50
2500.00 2.00 0.03 0.00 0.05
10000.00 3.00 0.20 0.80 2.00
500.00 0.05 0.01 0.05 0.05
0.130 0.018 392.20 175.00 2.40 1
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EXAMPLE I: MODEL CALIBRATION. JAFROUDI (1983) KAOLIN -- OCR:1,2,6.

INPUT DATA:
CONTROL CODES:

JOPT : 1
JRUN = 0
JPLT a 0
NTST 3
KRSL = 0
KNRMl z 0

POUR 1.OOE+00
PLIM c 1.00E-02
TLIM = 2.OOE-O1
NOPT z 5
KOPT = 5 9 10 14 16

INPUT DATA:
MATERIAL PROPERTIES:

LAMqBDA z 1.300E-01
KAPPA -. 0oOE02
MUC (CSL SLOPE) = 1.190E+O0
PUE/MUC = 7.370E-01
SHEAR MODULUS 6 = 5.000E103
CRULK MODULUS G4MMA 1 1.000E06
TRANSITIONAL STPESS PL c 1.013E+02
ATMOSPHERIC PRESSURE PA = 1.0131+02

MODEL CONSTANTS:

PC = 2.400E+00
AC 2 1.000E-01
T = 5.0WE-012
RE/RC t 1.000E400
AE/AC = 1.000E+00
PROJECTION POINT C z 4.OOOE-01
ELASTIC NUCLEUS S 1.0OE+00
HC 5.oooEol
C = 5.000E-01
HE/HC 2 I.O00E
ME/MC 2 1.000E+00
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INITIAL STATE PROPERTIES:

TEST OCR VOID-R P-PRECOH P-CONFIN

1 1.00 0,68 3.922E+02 3.922E+02
2 2.00 0.69 3.922Ef02 1.961E+02
3 6.00 0.72 3.922E+02 6.537E#01

INPUT DATA:
ITERATION INFORMATION AND ANALYTICAL OPTIONS:

MAX # OF ITERATIONS z 10
MAX RELATIVE ERRORS c 1,O00E-02
ACCELERATION FACTOR LIMITS z 1O E+00

U UNDRAINED CONDITIONS $*it

2222 ENGINEERING STRESSES AND STRAINS ASSUNED **2t

M* REFORJL.ATED NEARLY INCOMPRESSIBLE ANALYSIS MS

INPUT DATA:
SPECIFIED LOADIN6 HISTORIES:

TEST SEG-2 #-INC S-RATIO SS-CODE SI6/EPS-X SIG/EPS-Y SIG/EPS-Z TAU/GM-XY TAU/GAA-XY TAU/GAM-YZ

1 1 20 1.00 001111 3,922E+02 3.922E#02 2,000E-02 0,OOOE-01 0,OOOE-0: OOOE-01
1 2 20 1.00 001111 3.22E+02 3.922E#02 1.200E-01 0.OOOE-01 0,000E-01 0.OOOE-01

2 1 20 1.00 001111 1.961E#02 1.961E+02 2.000E-02 0,OOOE-01 0.OOOE-01 0.000E-01

2 2 20 1.00 001111 1.961E+02 1.961E+02 1,200r-01 0,OOOE-01 0,00E-01 O.OOOE-0Q

3 1 20 1.00 001111 6,540E+01 6.540E#01 2.OOOE-02 O.OOOE-0l O.OOOE-01 O.OOOE-01
3 2 20 1.00 001111 6.540E+01 6,540E+01 1.200E-01 O.OOOE-01 0.000E-01 0.OOOE-01

72



'.. °

INPUT DATA:
-i SPECIFIED EXPERIMENTAL OBSERVATIONS AND EI16HTING FACTORS:

- TEST PLOT KIND UF-TEST UF-PLOT #-PTS YhAX(PLOT) XNAX(PLOT) YMAX(KIND) XMAX(KIND)

* 1 1 2 1.000 1.000 15 2.170E+02 1.200E+01 2.170E+02 1.200E+01

1 2 3 1.000 1.000 15 3.922E+02 1.200E+01 3.922E+02 1.200E+01
1 3 4 1.000 1.000 15 2.860E+02 1.200E+O1 2.860E+02 1.200E+O1

2 1 2 1.000 1.000 15 2.020E+02 1.200E+01 2.170E+02 1.200E+01
2 2 3 1.000 1.000 15 2.061E+02 1.200E+01 3.912E+02 1.200E+01
2 3 4 1.000 1.000 15 1#020E'02 l.200E+01 2.860E+02 1.200E+O1

3 1 2 1.000 1.000 15 1.630E+02 1.200E+01 2.170E+02 1.200E+O1
3 2 3 1.000 1.000 15 1.317E+02 1.200E+01 3.?22E+02 1.200E+01
3 3 4 1,000 1.000 15 1.200E+O 1#200E+01 2.860E+02 1.200E+01

7-.
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INPUT DATA:
CALIBRATION COTM CODES.

,~ ~ ~ ~ ~~~- ------- --- --- . ... . . .-: . . . .. .. .i-

NMBER OF DIMENSIONS c 5
F.MAXIMUM1 NUMBER OF FUNCTION EVALUATIONS v400

OUTPUTDATAPRINTCODE 2
CONVERSENCE CRITERION CODE = 3
CUBIC INTERPOLATION OPTION CODE z 0
HESSIAN CONDITIONING OPTION CODE 2 0
# OF NON-ZERO HESSIAN VALUES TO BE READ = 0
PARAMETER SCALING OPTION CODE 0 0
I OF IMPROVED STARTING ESTIMATES REQUIRED 1
ABSOLUTE CONVERGENCE CRITERION FOR F(X) = 1.000E-02

ABSOLUTE CONVERGENCE CRITERION FOR S(X) z 1.O00E-08
VALUE OF THE LINE-SEARCH PARAMETER, SIGMA 9.OOOE-01
VALUE OF THE BRACKET-CHECK PARAMETER, RDA r 1.000E-04
VALUE OF THE BRACKET-CHECK PARAMETER, TAU I .OO0E-01
VALUE OF THE LINE SEARCH EXIT CRITERION c 1.O00E-03
VALUE OF THE FAIL-SAFE GLOBAL CRITERION 1,OE-04
# OF F-EVALUATIONS BEFORE FAIL-SAFE EXIT 100
ERROR BOUI: MACHINE REPRESENTATION OF XX 1.O00E-09
ERROR BOUND: MACHINE REPRESENTATION OF FX 1.O00E-04
MINIMUM VALUE OF THE DIFFERENCE INTERVALS a 5.000E-03
MAXIMUM ERROR IN FRD-DIFFERENCE CALCULATN s 1.000E-04
SCALING FACTOR FOR THE OBJECTIVE FUNCTION v 1.00 E+00

INPUT DATA:

INITIAL VALUES OF THE FUNCTION VARIABLES XlX2,...,XN:

5.OOE+03 2.55E+00 1.00E-01 4.00E-01 5.00E-01

INPUT DATA:
LONER AND UPPER ON ON THE FUNCTION VARIABLES XIX2,...,XN:

2.50E+03 2.00E+O0 3.00E-02 0.OOE-O1 5.00E-02
1.OOE+04 3.OOE+0O 2.00E-01 8.OOE-0! 2.00E+00

INPUT DATA:
INITIAL VALUES OF THE DIFFERENCING INTERVALS D1ID2...,9DN:

5.OOE+02 5.OOE-02 1.OOE-02 5.00E-02 5.OOE-02

-I
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OUTPUT DATA:

THE RESULTS OF THE OPTIMIZATION ROUTINE FOLLOW:

#- I#-F -G FI F2 $1 S2 Xl X2 X3 X4

0 6 1 O,OOOE-01 1.209E-01 O.OOOE-01 -1.162E-01 5,000E403 2.551E+00 1.000E-01 4,OOOE-01 5,OOOE-0
1 17 2 1.209E-01 1.140E-01 -l,162E-0l 3.986E-02 5.918E+03 2.520E+00 7.425E-02 4.984E-01 1.790E-0
2 28 3 1.140E-01 1.057E-01 -2.221E-02 -3.672E-03 6.006E+03 2,534E+00 6.624E-02 4,407E-O1 2.633E-O
3 44 4 1.057E-01 1.057E-01 -8.100E-03 -8.479E-03 6.006E+03 2.534E+00 6.624E-02 4.407E-01 2.633E-0
4 64 5 1.057E-O1 1.057E-01 -7.830E-01 9,BOOE-01 6.006EI03 2.534E+00 6.624E-02 4.407E-01 2.633E-0
6 112 8 1.020E-01 1020E-O! -1.93SE400 -6.981E-01 6.475E+03 2.574E+00 6.393E-02 4,441E-01 3.008E-0

7 126 9 1.020E-01 1.020E-01 -5.95E-04 3,318E-03 6.476E+03 2.574E+00 6.393E-02 4.441E-01 3.008E-0
8 137 10 1.020E-01 1.020E-01 -1.210E-06 2.506E-05 6.474E403 2.574E+00 6+392E-02 4.441E-0! 3.009E-0
9 145 11 1.020E-01 1.020E-01 -2.323E-05 7.391E-06 6.475E103 2.574E+00 6,393E-02 4.441E-01 3.OOSE-O

s5*1l THE INVERSE HESSIAN HAS DEEN RESET TO THE IDENTITY MATRIX *U$$

10 171 12 1.020E-01 1.008E-01 -9.e59E-02 2,457E-02 6.519E+03 2.571E+00 6.243E-02 4,587E-01 2.607E-O
11 184 13 1.00BE-01 1.008E-01 -3.280E-02 -5,474E-03 6.546E+03 2.570EW 5,712E-02 4.656E-01 2.55"E-0
12 199 14 1.OOBE-01 1.O08E-01 -8.714E-04 -3.526E-04 6.545E+03 2.570E+00 5.711E-02 4,655E-01 2.555E-0
13 214- 15 1.SE-0l l008E-01 -9.221E-04 -1.240E-03 6.545E+03 2.570E+00 5.711E-02 4.656E-01 2.556E-0
14 227 16 1.008E-01 1.008E-01 -2.456E-04 -1l185E-04 6,545E+03 2.570E+00 5.711E-02 4.656E-01 2.556E-0
15 241 17 lO8E-OI 1,008E-01 -2,144E-04 -3.18E-04 6.545E+03 2.570E 00 5.71'E-02 4.656E-01 2.55E-0
16 267 19 1.007E-01 1,009E-01 -5.07BE-04 -5,07BE-04 6.542E+03 2,573E+00 5.732E-02 4.651E- 1 2.576E-0

rS** THE SEARCH HAS BEEN TERMINATED DUE TO INSUFFICIENT PROGRESS *USU

0
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XVII. EXAMPLE lb- MODEL PREDICTION

To provide a second example of the code's capabilities, MODCAL has

been used to generate model predictions for a typical set of experimental test

conditions. As may be seen from the input and output files which follow,

predictions are required for three distinct loading histories. These three loading

histories simulate the conventional undrained triaxial compression tests performed

by Jafroudi (1983) on samples of Kaolin at overconsolidation ratios of OCR

1, 2 and 6 (see also Herrmann et al (1981b)). For completeness, the relation

plotting option has also been invoked (3PLT = 1), and in the nine plots which

result, the symbol "#" represents an experimental observation, while the symbol

"" denotes a model prediction.
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EXAKPLE I: MODEL PREDICTION. JAFROUDI (1983) KAOLIN -- 0CR-12,6.
3 0 1 1
0.130 0.018 1.180 0.737 5900.0 1000000.0 101.35 101.35
2.509 0.031 0.046 0.900 1.096 0.453 1.000
0.621 0.500 1.377 1.000
1 0,68 392.20 392.20 1.00
2 0.69 392.20 196.10 2.00
3 0.72 392.20 65.37 6.00
0 10 0 1.00 0.01
1 2
392.2 0 392.2 1 0.02 1 1 1 20 1.00

0 39..2 0 392.2 1 0.12 1 1 1 20 1.00
n 2

0 196.1 0 196.1 1 0.02 1 1 1 20 1.00
0 196.1 0 196.1 1 0.12 1 1 1 20 1.C

3 2
0 65.4 0 65.4 1 0.02 1 1 1 20 1.00
0 65.4 0 65.4 1 0.12 1 1 1 20 1.00

1 3
1 15 2 15 4 15

0.0 65.0 105.0 155.0 176.0 187.0 202.0 208.0
214.0 216.0 217.0 217.0 215.0 212.0 206.0
392.2 383.9 362.2 329.9 304.9 284.5 256.5 236.5
216,5 .204.2 196.5 191.5 184.9 179.9 174.9

0.0 65.0 105.0 155.0 176.0 187.0 202.0 208.0
214.0 2!6.0 217.0 217.0 215.0 212.0 206,0
0.00 0,12 0.2, 0.50 0,75 1.00 1.50 2.00
3.00 4.00 5.00 6.00 8,00 10,00 12.00
0.0 30.0 65.0 114,0 146.0 170.0 203.0 2

247.0 260.0 268.0 273.0 279.0 283,0 286.0
0.00 0.12 0.25 0,50 0.75 1.00 1.50 2.00
3.00 4.00 5,00 6.00 8.00 10.00 12.00

2 3
1 15 2 15 4 15

0.0 50.0 70,0 135.0 155.0 169.0 180.0 187.0
195.0 199.0 202.0 2021.0 202.0 200.0 198.0
196,1 197.0 199.0 206.1 203.8 201.4 194.1 189,4
181.1 175.4 171.4 169.4 165.4 161.1 160.14 0.0 50.0 70.0 135.0 155.0 169.0 180.0 187.0
195.0 199.0 202.0 202.0 202.0 200.0 198.0
0.0c 0.12 0.25 0.50 0.75 1.00 1.50 2.00
3.00 4.00 5.00 6.00 8.00 10.00 12.00
0.0 15.0 23.0 35.0 44.0 51.0 62.0 69.0

80.0 87.0 92.0 94.0 98.0 100.0 102.00.00 0.12 0.25 0.50 0.75 1.00 1.50 ..00
3.00 4.00 5.00 6.00 8.00 10,00 12.00

3 3
1 15 2 15 4 15

0.0 25.0 52.0 80.0 96.0 109.0 125.0 135.0
149.0 1%5.0 159.0 161.0 163.0 162.0 159.0
65.4 71.7 79.7 90.0 97.4 102.7 110.0 116.4

122.7 128.0 130.4 131.0 131.7 131.4 130.4
0.0 25.0 52.0 80.0 96.0 109.0 125.0 135.0

14e.0 1S50 159.0 161.0 163.0 162.0 159.0
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0.00 0.12 0.25 0.50 0,75 1.00 1.50 2,00
3.00 4.00 5.00 6.00 8.00 10.00 12.00
0.0 2.0 3.0 2.0 0.0 -1.0 -3.0 -6.0

-8.0 -11.0 -12.0 -12.0 -12.0 -12.0 -12.0
0.00 0.12 0.25 0.50 0.75 1.00 1.50 2.00
3.00 4.00 5.00 6.00 8.00 10.00 12.00
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C
C 0UC NODCAL
C6

C THIS SUBROUTINE SERVES AS THE MAIN DRIVING
C PROGRAM FOR THE BOUNDING SURFACE SOIL PLASTICITY
C MODEL CALIBRATION AND PREDICTION CODE.
C

F..'C WRITTEN BY J.S. DE NATALE,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION 1: MAY 1982.
C

DIMENSION XV(17)
CALL OPEN
CALL DATAIN (JOT, JRUN)
IF(JOPT.NE.O) CALL DSMOPT(XV)
IF(JRUN.NE.O) CALL EVAL(ZVFV,1)
CALL EXIT
END

C
C
C

SUBROUTINE DATAIN(IOPT, IRUN)
C
C THIS SUBROUTINE READS IN ALL VALUES REQUIRED TO CALIBRATE
C AND/OR USE THE BOUNDING SURFACE PLASTICITY MODEL PROGRAMS.
C
C WRITTEN BY J.S. DE NATALE,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MA! 1982.
C

COJ4ON/BLK7/SFUN,SF(17),XL( 17),IU( 17)
COI'IHO/BLKA/NTST,JOPT,JPLT,NOPTKOPT( 17)

.4 COIMON/BLKBN1 (6),W2(6,3),V3(6,3,20)
Is COMMON/BLKC/PRP ( 19),PRP2(6t'),IDAT(3),RDAT(2),

* NSEG(6),LTYP(6t4,7),VALU(6,4,7)
COIEON/BLKD/NPLT(6),KPLT(6, 3),NEXP(6, 3),

* IV(6,3,20),YV(6,3,20),PINC(61,5)
C0HMON/BLKE/KRSL, POWR,XMXR (5), TIR (5) ,XMP(6, 3),
* YMXP(6,3),PLIM,TLIN

DIMENSION TITL (20)
C
C FORMAT STATEMENTS
C

800 FORMAT(2OAI4)
804l FORMAT(1615)
808 FORMAT(SE1O.3)
812 FORMAT(15,51,EI30.3)
816 FORMAT(35,5X,ilElO.3)
820 PORMAT(il(2I5,E1O.3))
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8241 FORHAT(6(Il,E9.2),5XI5.E1O.3)
828 FORHAT(11(2I3,I11E1O.3))
900 FORMAT(OR 1/51,20A41)
9041 FORMAT(//5X, 'INPUT DATA: '/5X, 'CONTROL CODES:' /

* 5!.'--------------/
*15X,'JOPT =',I3/
*15X,'JRUN z1,131

* U15X,'JPLT s'o13/
*15X,'NTST ='o13/
I15X,IKRSL =',13/

*151,'KNRM zl,13/
*15X,'POWR z',lPE1O.2/
*15X,'PLIM :', 910.2/
*15X,'TLIM =I, 910.2/
*15X,'NOPT =',13/
*151,'KOPT z',15(13,31))

* .908 FORMAT(//5X, 'INPUT DATA: '/51, 'MATERIAL PROPERTIES: '
*5X, ------------------- 't/
* 151,'LAMBDA z',1PE1O.3/
* 15X,'KAPPA E' 10.3/
* 15X,'MUC (CSL SLOPE) inE10.3/

* 15X,'MUE/MUC 2' 10.3/
*151'SHEAR MODULUS G 21 E10.3/
*15X,'CBULK MODULUS GAA in', E10.3/
*15X,'TRANSITIONAL STRESS PL a', 910.3/
*151,'ATMOSPHERIC PRESSURE PA =I, E10.3///
*51, 'MODEL CONSTANTS:'/51,----------------- I//
*15WRC at,910.3/15X,'AC a't 110.3/
*151,'T u', EIO.3/15X,'RE/RC 2',E1O.3/

15X,"AE/AC =1,91O.3/
* 15WPROJECTION POINT C z',E1O.3/
* 15XELASTIC NUCLEUS S a',EIO.3/
*151,'HC mt,EIO.3/15X,'MC zt,ElO.3/
* 15X,'HE/HC z',ElO.3/15X,'ME/MC z',ElO.3)

912 FORMAT(//5X, 'INITIAL STATE PROPERTIES: '
*5X,' ------------------------ 1/
* 15X,'TEST',51,'OCR',21,'VOID-R',1,'P-PRECON',

* 11,'PCONIN'/51'---,51'---,2'-----It
*2(11 ------- )/M

916 FORMAT(15X,111,2F8.2,1P3El2.3)
920 FORMAT(//5X,'INPUT DATA:'/5X,'ITERATION INFORMATION '

* 'AND ANALYTICAL OPTIONS:'/
51,t ------------------------------------------------------ I//

* 151, 'MAX # OF ITERATIONS al,13/
* 151,'MAX RELATIVE ERRORS S',IPEIO.3/
* 15WACCELERATION FACTOR LIMITS z1,910.3)

9241 FORMAT(/1OI,'0009 DRAINED CONDITIONS 0000)
928 FORMAT(/1X,060 UNDRAINED CONDITIONS If'")
932 FORMAT1O,"Ot ENGINEERING STRESSES AND STRAINS ASSUMED *"
936 FORMAT(/1IO,"*"v TRUE STRESSES AND NATURAL STRAINS ASSUMED *fee')
9110 FORMAT(/10I,'#*#§ REFORMULATED NEARLY INCOMPRESSIBLE to

* 'ANALYSIS 00*0)
9111 FORMAT(/101,"'*'0 NON-REFORMULATED NEARLY INCOMPRESSIBLE '

*'ANALYSIS 9000)
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94~8 FORMAT(//51, 'INPUT DAA'/51, 'SPECIFIED LOADING HISTORIES:'
* 51,---------------------------1/
* 5X,'TEST',2X,'SEG-#0,21,,'D-INC',21,'S-RATIO',
* 2X, '83-CODE', 3X,'SIG/EPS-!' ,31, 'SI0/BPS-V.t
* 3X, 'SIG/EPS-Z' ,21, 'TAU/GAH-IY' ,21, 'TAU/GAN-I,
*2X,'TAU/GAM-YZ'/5X,t ----'l,2(21,'--
*2(2!,' ------- )93(319 --------- ),3(21,'-------- -ml/

952 FORMAT(5X,Il,2(2X,15),F9.2,3X,6Il, 1P6EI2.3)
* 956 FORMAT(20X)

C
C READ HEADING INFORMATION AND CONTROL CODES
C

READ(5,800) TITL
READ(5,801) NTST,JOPT,JRUN,JPLT,KRSL,KNRM,NOPT,

* (KOPT(II),II:1,NOPT)
IOPT=JOPT
IRUNzJRUN
IF(KNRM.EQ.O) POWR:1.O
IF(KNRM.NE.O) POWR=2.OO

C
C READ MATERIAL AND MODEL PROPERTIES
C

READ(5,808) (PRP1(II),II: 1,15)
READ(5.808) (PRP1(II),IIzl6,19)

IF(PRPI(15).LT.1.00) PRP1(15)=1.OO

DO 110 II=1,NTST
110 READ(5,812) ITST,(PRP2(ITST,JJ),JJ=1,I)

C
C READ CONVERGENCE CRITERIA AND ITERATION INFORMATION
C

READ(5,816) (IDAT(II),IIu1,3), (RDAT(II),I:1,2),PLIM,TLIM
C
C READ SPECIFIED LOADING HISTORIES
C

DO 120 1I=1,NTST
READ(5,801) ITST,NSEG(II)
DO 120 JJ=1,NSFGCII)
READ(5,824) (LTYP(II,JJ,KK),VALUCII,JJ,KK),KKu1,T)

C120 IF(VALU(II,JJ,7).EQ.0.0) VALU(II,JJ,7)z1.O
C RA XEIETLDT N LTIGISRCIN
C RA XEIETLDT N LTIGISRCIN

NSWT=O
DO 1140 II=1,NTST
READ(5,820) ITST,NPLT(II),W1(II),NWPT
READ(5,820) ((KPLT(II,KK),NEXP(II,KK),W2(II,KK)),
* KK=1,NPLT(II))

NSWT=NSWT.NWPT
DO 130 JJz1,NPLT(II)

* IF(NEXP(II,JJ).EQ.0) GO TO 1140
READ(5,808) (YV(II,JJ,KK),KK=1,NEXP(II,JJ))
READ(5,808) (!V(II,JJ,KK),KK=1,NEXPCII,JJ))

130 CONTINUE



140 CONTINUE
DO 150 IIzI,NTST
IF(W1(II).BQ.0.0) W1(II)=1.0
DO 150 JJ=1,NPLT(II)
IF(W2(II,JJ).EQ.0.0) V2(II,JJ)zI.0

,DO 150 KK=1,NEIP(IIJJ)
15W3(II,JJ,KK)xl.0

C READ SPECIAL EXPERIMENTAL WEIGHT! NGS,

IF(NSWT.BQ.O) GO TO 170
AI=FLOAT(NSWT)/4.0
A2=AINT(I1)
IF(AI-A2.GT.0.0) A2=A2+1.O
NW=IFII(A2)
NX=NSWT-I (NW-i)
DO 160 Il1.1W
IF(II.LT.NW) READ(5,828) ((IT,IPIE,

* W3(IT,IP,IE)),JJzl, 4)
160 IF(II.EQ.NW) READ(5,828) ((IT,IPIE,

1* W3(IT,IP,19)),JJ=1,NI)
170 CONTINUE

C
C INITIALIZE SCALING FACTORS
C

DO 180 II:1,NOPT
180 SF(II)=1.0

C
C ASSIGN DEFAULT VALUES
C

IF(PLIM.LT.0.01) PLIN=.01
IF(fLIM.LT.0.01) TLIM=0.01
IF(PLIM.GT.1.00) PLIM=I.OO
IF(TLIM.GT.1.00) TLIH:1.0O
IF(IDAT(2).LE. 0) IDAT(2)z10
IF(IDAT(2).GT. 20) IDAT(2)z20
IF(RDAT(l).LE.0.0) RDAT(1)=0.30
IF(RDAT(2).LE.0.0) RDAT(2)z=01

C
C PRINT INPUT DATA
C

WRITE(6,900) TITL
VRITE(6,904) JOPTJRUN,JPLT,NTST,KRSLoKNRM,

* POWR,PLIH,TLIMNOPT, (KOPT(II),II.1,NOPT)
WRITE(6,908) (PRP1(II),Ilzl,19)
WRITE(6,912)
DO 190 II:1,NTST

190 WRITE(6,916) II,PRP2(11,Uo(PRP2(II,JJ),JJ.1,3)
WRITE(6,920) IDAT(2).RDAT(2),RDAT(1)
IF(PRP1(6).BQ.O.0) WRITE(6,924)
IF(PRP1(6).NE.O.0) WRITE(6,928)
IF(IDAT(3).EQ. 0) WUITE(6,932)
IF(IDAT(3).EQ. 1) WRITE(6,936)
IF(IDAT(1).EQ. 0) WRITE(6,940)
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IF(IDAT(1).EQ. 1) VRITE(6,i4)
WRITB(6,948)
DO 210 II=1,NTST
DO 200 JJr1,ISEG(II)
WRITE(6,952) II,JJ,LTYP(II,JJ,7),VALU(1I,JJ,7),

* (LTYP(II,JJ,KK),KK=1,6),
* (VALU(II,JJ,KK),KK=1,6)

200 CONTINUE
WRITE(6.956)

210 CONTINUE
C
C ESTABLISH EXPERIMENTAL MAXIMA
C IF MODEL CALIBRATION IS REQUIRED
C

IF(JOPT.EQ.1) CALL FNDMAX(NTST,NSWT)
RETURN
END

C
C
C

SUBROUTINE FIDMAX(NTNS)
C
C THIS SUBROUTINE ESTABLISHES THE MAXIMA
C OF THE SPECIFIED EXPERIMENTAL OBSERVATIONS,
C AS REQUIRED BY SUBROUTINE DATAIN.
C

CO!401/BLKB/dI (6) ,'2(6, 3) ,W3(6, 3,20)
COtION/BLKD/NPLT(6),KPLT(6, 3),NEXP(6, 3),

* XV(6,3,20),YV(6,3,20),PINC(61,5)
COHON/BLKE/KRSL, POWR, IMX(5), YNXR (5),XMXP (6, 3),

* YMXP(6,3),PLIM,TLIM
C
C ESTABLISH MAXIMA
C

DO 100 I1:1,5
XMXR(II)=0.0

100 YMXR(II)uO.O
DO 120 II:I,NT
DO 120 JJ=1,NPLT(II)
KRzKPLT(11,JJ)
XMXP(II,JJ)=ABS(XV(IIJJ,1))
YMXP(II,JJ)=ABS(YV(II,JJ, 1))
DO 110 KK:2,NEXP(11,JJ)
IF(XMXP(II,JJ).LT.ABS(XV(1X,JJ,KK)))

* XMXP(Il. jJ):xABS (XVtII,JJ.,KK))
110 IF(INIP(II,33 LT.ARssf-.II,ij,KK)))

* Ymxp(II,.-,.4& IB V(II,JJ,KK))

120 XF(YMXR(KR).LT.YMXP(,II,JJ)) MR(KR)a!MXP(II,JJ)
C
C PRINT EXPERIMENTAL MAXIMA
C

WRITE(6, 130)

130 FORHAT(//5X, 'XNPUT D)ATA: '/51, 'SPECIFIED EXPERIMENTAL '
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*'OBSERVATIONS AND WEIGHTING FACTORS: '/
* 5!,' ------------------------------------- 'it

*51,'TEST',3Z,'PLOT',31,'KIND',21t'VF-TEST',
*21,'WF-PLOT',21,'#-PTS',21,'YMAI(PLOT)'.
* 21,'D4AX(PLOT)',21,'YI4AX(KIND)',2X,IXAX(KIND)'/

* 2(21,1'-------'9),22'- '.1-- (21,'--------
DO 160 II=1,NT
DO 1340 JJcl,NPLT(II)
KR=KPLT(IJJ)

1340 WRITE(6, 150) II,JJ,KR,W1(II),V2(IIJJ),NEXP(II,JJ),
* YMIP(II,JJ),XMXP(II,JJ)4141R(KR),XMXR(KR)

150 FORMAT(2X,3(31,134),2F9.3,2X,15,1P4E12.3)
160 WRITE(6,IT0)
170 FORMAT(201)

C
C PRINT SPECIAL EXPERIMENTAL WEIGHTINGS
C

IF(NS.EQ.0) GO TO 210
IS=0
WRITE(6, 150)

180 FORi4AT(//5X, 'INPUT DATA: '/5X, 'SPECIAL EXPERIMENTAL '

* 'EIGHTINGS:'/5Xt32('-')//51,'PT-#',3X,'TEST',
I 3X,'PLOT',21,'POINT',6X,'WEIGHT'/21,3(3XI'---- 1),
* 2!,' -',61s,------

DO 190 11=1,3
DO 190 JJ=1,NPLT(II)
DO 190 KK=1,NEXP(II,JJ)
WT=W3(II,JJ,KK)
IF(WT.NE. 1.0) IScIS.1

190 IF(WT.NE.1.O) WRITE(6,200) IS,II,JJ,KK,WT
200 FORMAT(21,34(41,13),IPE12.3)
210 CONTINUE

RETURN
END

C
C

14 C
SUBROUTINE EVAL (IOPT ,RSDL, JCOD)

C
C THIS SUBROUTINE PERFORMS A SINGLE-ELEMENT,
C INCREMENTAL-ITERATIVE FINITE ELEMENT ANALYSIS
C FOR HOMOGENEOUS LOADING CONDITIONS. FOR USE
C WITH MATERIAL MODELS SUCH AS THE BOUNDING
C SURFACE SOIL PLASTICITY MODEL.
C
C WITTEN BY L.P. HERRMANN,
C RECODED BY 3.5. DE NATALN,
C DEPARTMENT OF CIVIL ENGINEERING,

4C UNIVERSITY OF CALIFORNIAs DAVIS.
C LAST REVISED: MAY 1982.
C

COIION/BL17/SFUN,SF(17),IL( 17),XU( 17)
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COMMON/BLKA/NTST, JOPT,JPLT,NOPTKOPT( 17)
COMMON/BLKB/Wl(6),V2(6, 3),W3(6,3, 20)
COMMON/BLKC/PRP1(19),PRP2(6,4),IDAT(3),RDAT(2),

NSEG(6),LTYP(6'I,7),VALU(6,l,7)
COMMN/BLKD/NPLT(6),KPLT(6,3),NEXP(6, 3),

L . * V(6,3,20),YV(6,3,20),PINC(61,5)
COMON/BLKE/KRSL ,POWE , MXR (5) ,YMXR (5) ,IMIP (6, 3),
* YMXP(6,3),PLIM,TLIM

DIMENSION ILOD(6) ,VLOD(6),DLOD(6),SIGB(6),EPSB(6),DSIG(6),
* DEPS(6),STOR(6),PROP(21),C(6,6),3(7,7),R(7),RP(6)

DIMENSION XOPT(17)
C
C FORMAT STATEMENTS
C

900 FORMlAT(1H1,2X, 'OUTPUT DATA: '/3X, 'MODEL PREDICTIONS '

*'CORRESPONDING TO TEST DATA SET #',12,' ARE AS FOLLOWS:'

*///3X,'N',1hZ,'EPS-I, 14X,'EPS-Y',111,'EPS-Z',3X,'GAM-XIY,
*3X,'GAM-XZ',3X,'GAM-YZ',51,'SIG-1',5X,'SIG-Y',5X,'SIG-Z',
* JX,'TAU-XY','II,TAU-XZ',JX,TAU-YZ,6X,'U',3X,'#-IT'/

* 3(4IX,f ------ '--.2,'---
904~ FORMAT(//31,'CONVERGENC' ,iID NOT OCCUR FOR INCREMENT',139

I --- ERSIG=',E9.3,' AND EREPS=',E9.3//)
* 908 FORMAT(1K,I3,1P6E9.1,7E10.2,1I,I3)
* 912 FORMAT(/

916 FORMAT(1HI,2X, 'OUTPUT DATA: '/31, 'MODEL PREDICTIONS '

: -- IN TERMS OF THE KEY RESPONSE'/3X,'PARAMETERS -- 1
* 'CORRESPONDING TO TEST DATA SET #',12,' ARE AS FOLLOWS:'
*/3X,16( ------)//16X,'N',5X,'EPS-1',9X,'Q',9X,'P',91,'U',

-** 5X,'E-VOL'/16X,'-',5(5X ...-..1)
920 FORMAT(12X,15,5F10.2)

C
C INDIVIDUAL TEST LOOP
C

RSDL=O. 0
WTST=O. 0
DO 700 L1:1,NTST

C
C INITIALIZE ALL PARAMETERS
C

NO:o
fl: 1. OOE+25
DU iT 0.0

* XNRME1=O. 0
INRMS1=O.0
DO 100 II=1,6
EPSB (11 )0. 0
DEPS (11 0=. 0
SIGB(II )=0.0

100 DSIGCII)=O.0
U=0.0
DELU=O. 0

C
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C ASSIGN VALUES TO THE TEST UNDER CONSIDERATION
C

DO 105 11=1,19
105 PROP(II)=PRP1(II)

PROP(20)zPRP2(L1, 1)
PROP(21 )zPRP2(L , 2)
PAThzPROP (8)
PCONsPRP2(Ll,3)
KIND=IDAT(1)
CNFR=RDAT( 1)
IThXzIDAT (2)
ERNI=RDAT (2)

[i LARG=IDAT(3)
DO 110 I1:1,3

110 SIGB(II)=PCON
DO 115 11=1,5

115 PINC(1II)=-0.0
PINC(l, 2)=PCON

C
C ACCOUNT FOR CHANGES IN THOSE
C PARAMETERS WHOSE OPTIMAL VALUES ARE BEING SOUGHT
c

IF(JOPT.EQ.0) GO TO 125
DO 120 II=1,NOPT

120 PROP(KOPT(II))ZXL(II)+(IU(II)-IL(II))I
0 (SIN(IOPT(II)/SF(II)))f*2

125 CONTINUE
C
C SCALE PARAMETERS
C

PROP( 3):PROP( 3)/3.0/SQRT(3.O)
PROP( 7)=PROP( 7)03.0
PROP(21 )=PROP(21 )93.O

C
C LOADING HISTORY SEGMENT LOOP
C

IF(JCOD.EQ.1) WRITE(6,900) Li
DO 600 L2=1,NSEG(L1)
DO 130 I1=1,6
ILOD(II )=LTYP(LI ,L2,II)

130 VLOD(II)=VALU(L1,L2,II)
NINCZLTYP(L1,L2,7)
SRAT=VALU(Ll,L2,7)

C
C DETERMINE FIRST INCREMENTS
C

Dl :FLOAT (NINC)
D11l.0/D1
IF(SRAT.NE.1.0) D1201.0-SRAT)/(1.0-SRATOOMINC)
DO 135 Ila1,6
D2sVLOD(II )-SIGD(II)
IF(ILOD(II).EQ. 1) D2zVLOD(Il)-EPSB(II)

135 DLOD(II):D1OD2
C
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C CHANGE THE SIGN OF THE STRAIN ESTIMATE AT THE
C BEGINNING OF THE NEXT SEGMENT IF THERE HAS BEEN
C UNSTABLE BEHAVIOR AT THE END OF THE PREVIOUS ONE
C

DELU: O.010DELU
DO 1410 I1=1,6
DSIG(II)= 0.01*DSIG(II)

1410 DEPS(II)=-0.01SDEPS(II)
C
C INCREMENT LOOP
C

DO 500 INCR=1,NINC
C
C ITERATION LOOP (SUCCESSIVE APPROXIMATION)
C

DO 4100 ITNO:1,IThX
C
C ESTABLISH INCREMENTAL PROPERTIES
C

NJ=NO+l
K7=ITNO
CALL CLAY(3,NJ,K7,PROP,STOR,SIGB,EPSB,
* DSIG,DEPS,C,U,DELU,GAMA,KIND,LARG)

C
C FORM AND MODIFY STIFFNESS MATRICES
C

DO 200 11=1,3
S(7,II)=GAHA
S(7,II.3)=0.O
S(II,7):1.0

200 S(II,3,7)=O. 0
S(7,7)=-1.0
R(7)=O.O
DO 210 II=1,6
DO 205 JJ=1,6

205 S(II,JJ)=C(II,JJ)
R(II ):DLOD(II)
IF(ILOD(II).EQ.O) GO TO 210
S(II,II ):XX
R (II )=DLOD(II )OXX

210 CONTINUE
C
C SOLVE FOR STRAIN INCREMENT
C

4 NN=7-KIND
DO 230 II1,NN11
D2= 1. 0/S (II, II)
R(II )=R(II )*D2
DO 215 JJ=II,NN

215 S(IIJJ)uS(II,JJ)OD2
6 IF(II.EQ.NN) G0 TO 230

ILaIIel
DO 225 JJuIL,NN
D2=-S(JJ,II)
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DO 220 KK=IIIN
220 S(JJ,KK)=S(JJKK)+D2*S(UI,KK)
225 R(JJ):R(JJ)*D2*R(II)
230 CONTINUE

ICZNI
DO 235 II=2,511
ICSIC- 1
ILxIC+1
DO 235 JJ=IL,NN

235 R(IC)zR(IC)-S(IC,JJ)*R(JJ)
C
C COMPUTE STRESS INCREENT
C

DO 24I5 I1:1,6
D2=0.0

DO 240 JJ=1,6
24~0 D2=D2.C(II,JJ)*R(JJ)
245 RP(II)zD2

C
C COMPUTE ERROR NORMS
C

ESIG=0. 0
EEPS=0.0
D1:0O
D2=0.0
DO 250 11:1,6
ESIG=ESIG+ABS (RP (II )-DSIG (II))
EEPS=EEPS+ABS CR (II )-DEPS (II))
D1=DIeABS(RP(II))

250 D2=D2+ABS(R (II))
DU1P=D1
IF(DU1P.LT.DU1T) DUlPmDUlT
ESIG:ESIG/DU iF
EEPS=EEPS/D2

C
C CHECK FOP CONVERGENCE
C

IF(ESIG.LT.ERMX.AND.EEPS.LT.ERMX) GO To 4b05
C
C APPLY AITKEN'S NORM ACCELERATION
C

CNFS: 1.0
CNFE: 1.0

* IF(ITNO.EQ.1.OR.((-1)0'ITNO).GT.0) GO TO 255
CALL AITKEN(XNRMS2,XNRMS,D1 1CNFS,CNFR)
CALL AITKEN(XNRME2,INRME1 ,D2,CNFE,CNFRt)

255 D1:0.0
D2=0.0
DO 260 l1:1,6

* DSIG(II)xCNFS'RP(II).(1.-CNFS)IDSIG(II)
* DEPS(II)cCNFE*R (II)+(1.0-CNFE)ODEPS(II)

D1.DIeAB(DSIG(II))
260 D2:D2.ABS (DEPS (II))
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IF(KIND.EQ.O) DELU=CNFS*R(7)+(1.0-CNFS)IRDILU
INRMS2=XNRMS 1
INRME2zXNRJ4E
XNRMS1=D1
XNRMElzD2

4100 CONTINUE
IF(JCOD.EQ.1) WRITE(6,901) NO+l,ESIG,EEPS,
GO To 605

C
*C UPDATE TOTAL VALUES

-. C
4105 NO=NO+i

DUlT=0.0
DO 4110 IIzi,6
DLOD(II ):DLOD (II )fSRAT
DSIG(II)=RP(II)
DEPS(II )=R (II)
SIGB(II )=SIGB(II ).DSIG(II)
EPSB(II )=EPSB(II)+DEPS(II)

4110 DU1T=DUlTsO. OADS (SIGB(II))
IF(KIND.EQO0) DELU=R(7)
U:U+DELU

C
C STORE INCREM4ENTAL VALUES FOR FUTURE PLOTTING
C

NJ=NO, 1
PINC(NJ, I)=(SIGB(3)-SIGB(l))
PINC(NJ,2)=(SIGB(1)+SIGB(2)+SIGB(3)) /3.0-0
PINC(NJ,3)= U
PINC(NJ,11)=(EPSB(1),EPSB(2).EPSB(3))'100.OO
PINC(NJ,5)= EPSB(3)'100.O0

C
C PRINT INCREMENTAL VALUES
C

IF(JCOD.EQ.1) WRITE(6,908) NO, (EPSB(II),II=1,6),
I (SIGB(II),IXI=,6),U,ITU0

500 CONTINUE
IF(JCOD.EQ.1) WRITE(6,912)

600 CONTINUE
605 CONTINUE

IF(JCOD.EQ.O) GO TO 615
WRITE(6,916) Li
DO 610 II=2,NJ
JJ:11-1

610 WRITE(6,920) JJ,PINC(II,5),(PINC(II,KK),KK1,1)
615 CONTINUE

C
C COMPUTE RESIDUALS IF MODEL CALIBRATION IS REQUIRED
C

ITSTzL 1
* IF(JCOD.EQ.1) Go TO 620

CALL RSDUAL(NJITST, RTST)
RSDL=RSDLRTSTIV1 (Li)
WTST=WTST.W 1(Li)
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620 CONTINUE
C
C PLOT MODEL PREDICTIONS IF PLOTTING IS REQUIRED
C

IF(JCOD.Q.I.AND.JPLT.Q.1) CALL PLTCHK(NJITST)
700 CONTINUE

IF(WTST.NE. O.0) RSDL=RSDL/WTST
RETURN
END

C
C
C

SUBROUTINE AITKEN(12,XI,,IXC,XL)
C
C THIS SUBROUTINE COMPUTES
C THE AITKEN'S CONVERGENCE FACTORS.
C

•c=l.o
DX=2. OX1-X2-XI
IF(DI.EQ.O.0) RETURN
XC= (X -'?)/DX
IF(XC.LT.XL) XC-XL
IF(IC.GT.(1.0/XL)) c=1.O/L
RETURN
END

C
C
C

SUBROUTINE PLTCHK (NP, IT)
C
C THIS SUBROUTINE SERVES AS THE DRIVING PROGRAM
C FOR THE ASSOCIATED PLOTTING SUBROUTINES JSDPLT,
C LSHIFT AND BORDER.
C
C WRITTEN BY J.S. DE NATALE,
C DEPARTMENT' OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MAY 1982.
C

COM!ON/BLKD/NPLT(6),KPLT(6, 3),NEXP(6,3),
IV(6,3,20),YV(6,3,20),PINC(61,5)

DIMENSION IPLT(0)
C
C CHECK WHETHER PLOTTING IS REQUIRED (NOTE:
C ADDITIONAL RELATION TYPES MAY BE INCLUDED AS NEEDED)
C

IP:0
DO 100 III,10

100 IPLT(II)=O
DO 110 II1=,NPLT(IT)

110 IPLT(KPLT(IT,II))=i
IF(IPLT( 1).EQ.1)
* CALL JSDPLT(ITIP,NP, 1, 2,' Q 1,1 P s)
IF(IPLT( 2).EQ. 1)
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* CALL JSDPLT(IT,IPNP, 1, 5,0 Q ','EPS-Z')
IF(IPLT( 3).EQ.1)
* CALL JSDPLT(IT,IP,NP, 2, 5,' P l''PS-Z')

IF(IPLT( 4).EQ.1)
* CALL JSDPLT(IT,IP,NP, 3, 5,' U t ,'EPS-Zl)

IF(IPLT( 5).EQ.1)
* CALL JSDPLT(IT,IP,*P, 14, 5,'EPS-V','EPS-Z')

RETURN
END

C
C

THSSBOTNCIET H LTIGO H PCFE
SUBROUTINE JSDPLT(IT,IP,NP,IY,I!,TY,T!)

COTISNUBROUTNELTDIRECTSLTHE, PLOTNEG( 3),H PEIFE

D XIMENON OLBSERVAIONLAND,TCHEOREIT,IMOE(PREDICIONS.

D UIESITON ALI)FORI, DAVIS.
D EOUBL PEI ON TAY982
DAAFP/ 1' ! 1 ,'1! C ! !

DIESO ,'32!I, ','33!,', 31!, '31, ,'61,ICE37!,', 38, ',39!

DAT *I/ 19,' '11!,',1 '21,',1 '13!,', '41,1,1 11,1 '16!, ' 117X,

148,',149,,50!,','5lX,','52X,1,'531,,54X,1,155X,I
* ,'~056X,', '57!,', '58!, , I59X,t,160,l, '61!,1, '62!,', '63!,'
I ,~

1614X, , '65!,', '66!,i, '67!,', '68!,', '69!,','70!, ','71!, I

* ,'7II2!,', '73!, ','71!, ,75!,', '76!, ,'77X,1, '78!,', '79!,'
* ,'80!O, ', '81!, ','82X, ,,'83!, ',184x,',,'85!, ,,86x,,,'87!,I
* ,'088!,', '89!, ','90!, ,'91X,', '92!, ', '93!, ',94!, ,95X,

DATA FORM/'(1H..','19!,t,t its

DATA FSYM/'IHf)'o'IH*)'/
IPZIP+ 1
NE=NE!P(IT, IP)

j C
C ESTABLISH MINIMUM AND MAXIMUM AXES VALUES
c

XMIN=PINC(1,IX)
D4AlrPINC( 1,I1)
ThINzPINC(1,IT)
YMA~ZPINC(1,IY)
DO 100 II.-2,NP
IF(IMIN.GT.PINC(II,ll)) !MIN.PINC(II,IX)
IF(IMAX.LT.PINC(II,IX)) IMA~sPINC(IX,1Z)
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IF(IMIN.G;T.PINC(IIIY)) YMIN=PINC(IIIY)
100 ZF(YKAX.LT.PINC(III)) YMAXzPINC(Il,IY)

IF(NE.EQ.O) GO TO 120

IF(!MIN.GT.TV(IT,IP,II)) YXN=YV(IT,IP*11)
10IF(XMAX.LT.XV(IT,1P,11)) ThAI:11(IT,I?,1I)

C1 ESALSY ASE MAX V(,IIMUM AND MYVIIU AESAUE

C

CALL LSHIFT(DEIN,XMAX)
CALL LSRIFT (hIN ,Uhkl)

C
C ESTABLISH AXES LABLES

L C
XDSTzIHAX-1141N
YDST=ThAX-YMIN
ZINCzXDST/10. 0
YINC=YDST/1O. 0
XLAB( 1)=XNIN
XLAB(11 )=XMAX
YLAB( 1)=YMIN
YLAB(1 1 )=TAX
DO 130 11=2, 10
AA=FLOAT(II)
AA=FLOAT(II-1)
XLAB (II) :XMXN.XINClAA

130 YLAB(II )=ThINeYINCOAA
C
C ESTABLISH DATA COORDINATES

DO 1410 II:1,NP

A1:((PINC(II,IX)- DEIN)/XDST)0100.0
IF(A1.LT.0.0) A1=0.0
A2=AINT(A1)
IF(A1-A2.GT.0.5) A2:A2+1.0
ICP! (II )=IFIX(k2)
AI:((PINC(II,IY)- YhIN)/YDST)l 50.0
IF(A1.LT.0.0) A1=0.0
A2zAINT(A1)
IF(Al-A2.GT.0.5) A2xA2.0

1410 ICPY(II)xIFIX(A2)-a IF(NE.EQ.O) GO TO 160
DO 150 II=1,NE
Als( (XV(IT,IP,II )-D34IN)/IDST)0100.0F IF(AI.LT.0.O) A1=0.0
A2vAINT(A1)
IF(A1-A2.GT.0.5) A2zA2.1.0
ICE! (II).IFIX (A2)
A1:((YV(IT,IP,11)-YMIN)/TDST)* 50.0
IF(A1.LT.0.0) AlzO.0
A2wAINT (Al)
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IF(A1-A2.GT.0.5) A2zA2+1.O
150 ICEY(II)=IFIX(A2)

C PRINT PLOT
C

160 WRITEC6, 170)
170 FORMAT(1H1/)

11:1
JJ= 0
DO 210 12=1,51

C
C PRINT HEADINGS AND AXES LABLES
C

K7=12
CALL BORDER(II,JJK7,XLAB,YLAB,TXTY)

C
C PRINT DATA POINTS
C

13=51-I2
DO 180 J2=1,NP
IF(ICPY(J2).EQ.I3) PORH(J4)=FSYM(l)
IF(ICPY(J2).EQ.I3) FORM(3)zFSPA(ICPX(J2)+1)

180 IF(ICPY(J2).EQ.I3) WRITE(6,FORM)
IF(NE.EQ.0) GO TO 200
DO 190 J2=1,NE
IF(ICEY(J2).EQ.13) FORM('I)=FSYM(2)
IF(ICEY(J2).EQ.13) FORM(3)=FSPA(ICEX(J2),1)

190 IF(ICEY(J2).EQ.I3) WRITE(6,FORN)
200 CONTINUE
210 CONTINUE

220 FORMAT(/16x,11(F8.34,2X))

WRITE(6,230) TX
230 FORMAT(/20X,'18X,A5)

RETURN
END

C
C
C

SUBROUTINE LSHIF7(PMIN, PMkAX)
C
C THIS SUBROUTINE ADJUSTS THE MINIMUM
C AND MAXIMUM AXES VALUES, AS REQUIRED
C BY SUBROUTINE JSDPLT.

* C
DX=(PM4AX-PMIN)/10.0
XL=PMIN-DX
XU=PMAX+DX
DO=ABS (PHIN)
DlznABS(PMAX)

* IF(D1.LT.DO) D1=DO
NN=2 1
DO 100 JJ:1,1I0



C- '........

IF(ID1.GE.C1) 00 TO 110
100 CONTINUE
110 Dl=Pt4AX/C1

I1=IFIX(D1)
DU=FLOAT(II )*C1
IF(DU.LT.PHAX) I1:11.1

* DU=FLOAT(IX)OCI
IF(DU.LE.XU) GO TO 120
C1=C1/10. 0
GO TOl110

120 D1:PtIIN/C1
II=IFIX(D1)
DL=FLOAT(II)GC1

DL=FLOAT(II )*C1
IF(DL.GE.2CL) GO TO 130
C1=C1/10. 0
GO TO 110

130 PNIN:DL
PHAX=DU
RETURN
END

C
C
C

SUBROUTINE BORDER(II,JJ,I2,XLAB,YLAB,XTYT)
C
C THIS SUBROUTINE PRODUCES THE PLOT HEADINGS
C AND AXES LABLES, AS REQUIRED BY SUBROUTINE JSDPLT.
C

DIMENSION XLAB(l1),YLAB(11)
DOUBLE PRECISION IT ,YT

IF(12.EQ.1.OR.12-II.ZQ.5) [[:1
IF(KK.EQ.1) 11=12
IF(KI.EQ. 1) JJzJJ.1
LLz 12-JJ
IF(12.EQ. 1) WRITE(6,110) YLAB(LL)
IF(12.EQ. 1) 00 TO 100
IF(I2.EQ.26) 1IRITE(6, 120) YT,YLAB(LL)
IF(I2.EQ.26) GO TO 100
IF(I2.EQ.51) WRITE(6,110) YLAB(LL)
IF(I2.EQ.51) GO TO 100
I F(KK.EQ. 1) WEITE(6, 1320) YLAB(LL)
IF(KK.EQ. 0) WRITE(6, 110)

100 CONTINUE
*.110 FORIAT(11,5X,2X,FIO.5,21,'I',10(' ---------it))

120 FORMAT(1I,A5,2X,F10.5,2,'e-',971,'-.+')
130 FOIMAT(1,51,21,FO.5,21,+-,97,'-.')

4 140 FORMAT(11,51,21, 10I,2X,tI 1,971,1 11)
RETURN
END

C
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C
C

SUBROUTINE RSDUAL(NP, IT,RTST)
C
C THIS SUBROUTINE COMPUTES THE WEIGHTED
C ABSOLUTE OR SQUARED RESIDUAL BETWEEN THE

.* C EXPERIMENTAL OBSERVATIONS AND THE CONSTITUTIVE
C MODEL PREDICTIONS.
C
C WRITTEN BY J.S. DE NATALE,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MAY 1982
C

COMON/BLKB/W1 (6),W2(6,3),V3(6,3,20)
COMO N/BLKD/NPLT(6),KPLT(6,3),NEXP(6, 3),
SXV(6,3,20),YV(6,3,20),PINC(6I,5)
COHMON/BLKE/KRSL,POWR,IMIR(5),YMIR(5),XXP(6, 3),

- TMXP(6,3),PLIM,TLIM
C
C INDIVIDUAL PLOT LOOP
C

RTST-O.O
WPLT=O. 0
DO 400 IP=INPLT(IT)

C
C IDENTIFY RELEVANT MAXIMA
C

00 TO (100,102,104,106,108), IPLT(IT,IP)
100 1X=2

IY= 1
IALL=XMCR(1)
YALL=YMXR(l)
GO TO 120

102 IX=5
IY: 1
XALL=XMXR (2)
YALL=YMXR (2)
GO TO 120

104 IX=5
IY=2

XALL=XMXR (3)
YALL=YMXR (3)
GO TO 120

106 IX=5
IY: 3
IXALL= MXR(4)
.ALL=YMXR (3)
00 TO 120

108 IX=5
.*. IYz3

IALL=IMXR (5)
YALLTMXR (5)

120 CONTINUE
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C
C COMPUTE AND SUM WEIGHTED RESIDUALS
C

IF(KRSL.IE.O) LLu1
IF(KRSL..EQ.O) LL=2
RPLT=O.O
WPNT=O.O

* DEMAXlXP(IT, IF)
YIAX:YMXP(IT, IF)

C
C CHECK FOR ABSOLUTE OR RELATIVE TEST SCALING
C

DXW:IHAX
ThIT=YMAX
IF( (nWA/YALL).LT.TLIN) YIXTxYALL*TLIM

C
C INDIVIDUAL EXPERIMENTAL OBSERVATION LOOP
C

DO 300 IE=1,NEXP(IT,IP)
RPNT=0.0

C
C MODEL PREDICTIONS LOOP (IN CALLED SUBROUTINE)
C

I34INZ0
IPLT=IP
IEXP=IE
IF(KRSL.NE.O) CALL VRTICL(IT,IPLT,IEXPoUP,IX,UT,

* LL, YE ,DR ,IMIlI)
IF(KRSL.EQ.O) CALL EUCLID(IT,IPLT,IEIP,*P,IX,IY,

* ~LL, YE, DR, 1111, D4XT, YMXT)
C
C CHECK FOR ABSOLUTE OR RELATIVE POINT SCALING
C

IF(1141N.EQ.0) GO TO 200
YExABS (YE)

IF( (71/YNAX).LT..PLIH) 7 W V:IMAX 9PLIM
RPNT=( (ABS(DR)/YNIV)'(INAX/!NXT) )"POWR
RPLT=RPLT+RPNTOW3 (IT, IP, IS)
WPNT=WPNT.W3 (ITIF, IS)

200 CONTINUE
300 CONTINUE

RPLTzRPLT/WPNT
RTST=RTST+RPLTOW2 (IT, IF)
WPLTzVPLT+W2(XT, IP)

400 CONTINUE
RTSTzRTST/WPLT
RETURN

EN
C
C

SUBROUTINE EUCLID(IT,IPIE,NP,IX,IY,LL,YE,DR,
* ININ, MaT , YXT)
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C THIS SUBROUTINE CONPUTES THE MINIMUM EUCLIDEAN
C DISTANCE BETWEEN THE EXPERIMENTAL OBSERVATION AND
C THE MODEL PREDICTION OCURVE'.
C
C WRITTEN BY J.S. DE NATALE,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MAY 1982.
C

COI4ON/BLKD/NPLT(6),KPLT(6, 3),INEXP(6, 3),
XV(6,3,20),YV(6,3,20),PINC(61,5)

C
C DETERMINE THE PREDICTION POINT WHICH IS NEAREST
C TO THE EXPERIMENTAL OBSERVATION IN A SUITABLY SCALED
C X-Y SPACE
C

ML= 0
DR=1. OOE.02
XE=XV(IT,IP,IE)/XMIT
YE=YV(IT,IP,IE)/YMXT
DO 100 KL=LL,NP-1
XP=PINCCKL, 11)/XNIT
YP=PINC(KLIY)/YMXT
DV=SQRT( (XE-XP)962e(YE-YP)002)
IF(DR.GT.DV) NL=KL

100 IF(DR.GT.DV) DR=DV
IF(ML.EQ. 0) GO TO 120

C
C SEARCH ADJACENT SEGMENTS FOR AN EVEN SMALLER DISTANCE
C

NL=ML
DO 110 ?O4=1,2
K1=NL-1
12=NL
11=PINC (KI,IX)/X4XT
Y1=PINC(K1,IY)/YMXT
X2=PINC (K2, IX) /D4XT
Y2=PINC (K2, IY)/YMXT
DX=X2-I11
DY:Y2-Y 1
BETA=((XE-X1 )'DX.(YE-Y1 )'DY)/(DX"62+DY'0 2)
IF(BETA.LT.0.0) BETA=0.0
IF(BETA.GT.1.O) BETA=1.O
XM:11BETAODX
TY 1.lBETAODY
DV=SQRT( (XE-XM)*02+(YE-YM)962)
IF(DR.GT.DV) DR=DV

110 NL=NL.1
LL:IL
ThIN: 1

120 DR=DR#YMXT
YE: YEIhXT
RETURN
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END
C

C
SUBROUTINE VRTICL(IT,IP,IE,NP,IX,IYLL,YE,DR,IM)

C
C THIS SUBROUTINE COMPUTES THE MINIMUM VERTICAL
C DISTANCE BETWEEN THE EXPERIMENTAL OBSERVATION AND THE
C MODEL PREDICTION 'CURVE3.
C
C WRITTEN BY J.S. DE NATALE,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MAY 1982.
C

COMON/BLKD/NPLT(6),KPLT(6, 3),NEXP(6,3),
6 XV(6,3,20),YV(6,3,20),PINC(61,5)

C
C DETERMINE THE PREDICTION POINTS WHICH MOST CLOSELY
C BOUND (WRT THE I-VALUE) THE EXPERIMENTAL OBSERVATION
C

XE=XV(IT,IP,IE)
YE=YV(IT,IP,IE)
DO 100 KLsLL,NP-1
KU=KLI
XL=PINC(KLIX)
YL:PINC (KL, IY)
XU=PINC (KU, IX)
YUUPINC(KU,IY)
IF(XE.EQ.XL) 00 TO 110
IF(XE.EQ.XU) GO TO 120
IF(XE.LT.XL.AND.XE.GT.XU) GO TO 130

100 IF(XE.GT.XL.AND.XE.LT.XU) GO TO 130
GO TO 150

110 YPzYL
GO TO I40

120 YPvYU
GO TO 140

130 BETA=(XE-XL)/(XU-XL)
YPxYL+ BETA*(YU-YL)

140 DR=ABS(YE-YP)
LL=KL
IMIN=1

150 CONTINUE
RETURN
END

C
C
C

SUBROUTINE BSMOPT (XX)
C

THIS SUBROUTINE DIRECTS THE CALIBRATION OF THE
C BOUNDING SURFACE PLASTICITY MODEL. THE OPTIMAL
C VALUES OF THE MATERIAL AND MODEL PARAMETERS ARE
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C SELECTED BY MINIMIZING THE WEIGHTED RESIDUAL BETWEEN
C THE EXPERIMENTAL OBSERVATIONS AND THE MODEL PREDICTIONS.
C
C WRITTEN BY J.S. DE NATALE,

*C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MAY 1982.
C

COMMON/ELK 1/ETAF, ETAX, DHIN, FDER
COMMON/BLK2/NDIM, NFMX,l1, 2, C3
COMMON/BLK3/NI,NF,NG,F1,F2,S1 ,S2,X1 (17),X2(17)
COHMN/BLK1I/EPFA,EPSA, ICON,JCON, IPIN, ICUB,XE( 17)
COHMN/BLK5/D1(17),D2(17),Gl(17),G2(17),DG(17),DX(17),

0 Hl(17,17),H2(17,17)
COM*ON/BLK6/EPFL ,EPXL ,NFLX
COMMON/BLK7/SFUN ,SF( 17) ,XL(C17) , xD 17)
DIMENSION XX(17)

C
C READ CALIBRATION SPECIFICATIONS
C

CALL CALDAT
C
C INITIALIZE GLOBAL SEARCH
C

DO 100 II=1,NDIM
TX=X2 (II)
TD=12 (II).DX (II)
12(II)=ASIN(SQRT((TX-XL(II))/(IU(II)-XLCII))))
DX(II):ASIN(SQRT((TD-XL(Il))/(XUCII)-XL(II))))-X2(II)
X2(II )=K2(ITI )OSF(II)

100 DX(II)=DX(II)OSF(II)
NF=O
HG: 0
NI=0
F2=FFUN (12)
NF=NF+ 1
DO 110 II=1,NDIN
IG=II

110 G2(IGW=GFUN(IG,O,NDIM)
NG=NG+ 1
CALL MVPROD(H2,G2,D2,NDIM)
S2=DTPROD(G2, D2,NDIM)
IF(IPRN.GE.1) CALL PRNOUT(1,NDIM)

C
*C PERFORM LINE SEARCH

C
200 CALL SEARCH

C
C IF NO MINIMUM HAS BEEN FOUND, UPDATE THE
C INVERSE HESSIAN, COMPUTE A NEW SEARCH DIRECTION.
C AND PROCEED WITH THE NEXT ITERATION

-. C

IF(JCON.EQ.1) GO TO 300
CALL BFGSUP(S2, IHES,NI, NDIM)
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JCON=0
IF(ICON.EQ.3) CALL CONCHK(DF,S2,DX,NDIM)
IF(JCON.EQ.1) CALL PRNOUT(1,NDIM)
IF(JCON.SQ.1) CALL PRNOUT(5,NDIM)
IF(JCON.EQ.1) GO TO 300
GO TO 200

C
C TERMINATE GLOBAL SEARCH
C

300 CONTINUE
DO 310 II=l,NDIH

310 fl(IIWIx2(II)
RETURN
END

C
C
C

SUBROUTINE CALDAT
C
C THIS SUBROUTINE READS IN ALL ADDITIONAL
C INFORMATION REQUIRED TO DIRECT THE M4ODEL
C CALIBRATION ALGORITHM.
C
C WRITTEN BY J.S. DE NATALE,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MAY 1982.
C

COMMON/BLKA/NTST,JOPT,JPLT,NOPT,KOPT( 17)
CONMON/BLKC/PRPI(19),PRP2(6,1),IDAT(3),RDAT(2),

NSEG(6) ,LTYP(6,4I, 7),VALU(6,1, 7)
COMMON/ELKi /ETAF,ETAX,DMIN,FDER
COMMON/BLK2/NDIM,NFMX,C1 ,02,C3
COHMON/BLK3/NI,NF,NG,F1,F2,Sl,S2,X1(17),12(17)
CONMON/BLKI1/EPFA,EPSA, ICON,JCON, IPRN, ICUB,XE( 17)
COHMN/BLK5/D1(17),D2(17),G1 (17),G2(17),DG(17),DIC 17),
* H1(17,17),H2(17,17)

COMMON /BLK6 /EPFL, EPXL , NFLi
COMMON/BLK7/SFUN ,SF( 17) , L (17) ,XU(C17)

C FORMAT STATEMENTS
C

800 FORMAT(16I5)
804 FORP4AT(710.3,M1)
808 FORMATC8E1O.3)
812 FORMAT(11(215,E10.3))
816 FORMAT(5EI0.3,615)
900 FORMAT(1H1)
9041 FORMAT(51 *INPUT DATA:' /5X, 'CALIBRATION CONTROL CODES: '/

* 51,' ------------------------- 1/
* 15X,'NLIIBER OF DIMENSIONS zp4
* 151,1MAXIMUM NUMBER OF FUNCTION EVALUATIONS 21,141/
* 15X,'OUTPUT DATA PRINT CODE z,4
* 15X,'CONVERGENCE CRITERION CODE
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I 15X,'CUBIC INTERPOLATION OPTION CODEre14
* 15X,'HESSIAN CONDITIONING OPTION CODE 14
* 15X,'# OF NON-ZERO HESSIAN VALUES TO BE READ X1,14/

*I 15X, 'PARAMETER SCALING OPTION CODE Z"4
* 15X,1# OF IMPROVED STARTING ESTIMATES REQUIRED .',I4/
I 15X,'ABSOLUTE CONVERGENCE CRITERION FOR F(l) m',1PE1O.3/
* 15WABSOLUTE CONVERGENCE CRITERION FOR SCI) c', E10.3/
* 15X,'VALUE OF THE LINE-SEARCH PARAMETER, SIGMA ',ElO.3/

* I 15X,'VALUE OF THE BRACKET-CHECK PARAMETER, ROA ' ElO.3/
* 15X,'VALUE OF THE BRACKET-CHECK PARAMETER, TAU 0, E10.3/

*I 15X,'VALUE OF THE LINE SEARCH EXIT CRITERION =', E10.3/
I 151,'VALUE OF THE FAIL-SAFE GLOBAL CRITERION 21 E1O.3/
* 15X,'# OF FN-EVALUATIONS BEFORE FAIL-SAFE EXIT mI4/
I 15X,ERROR BOUND: MACHINE REPRESENTATION OF XX CE1O.3/

I 151,'ERROR BOUND: MACHINE REPRESENTATION OF Fl ' E10.3/
* 151, 'MINIMUM VALUE OF THE DIFFERENCE INTERVALS 0, E10.3/
* 15XMAXIMUM ERROR IN FWD-DIFFERENCE CALCULATN =1, E10.3/
* 15X,'SCALING FACTOR FOR THE OBJECTIVE FUNCTION u's E10.3/)

* 908 FORMAT(/5X,'INPUT DATA:'/5X,'INITIAL VALUES OF THE FUNCTION '
I 'VARIABLES 11,X2,...,XN:'/5X,5411-)/1O1I1P12E10.2)

912 FORMAT(/5X,'INPUT DATA:'/5X,'LOWER AND UPPER BOUNDS ON THE '

* 'FUNCTION VARIABLES I1,X2,...,IN:'/5X,62('-'))
* 916 FORMAT(OX1P12E1O.2)

920 FORMAT(/5X,'INPUT DATA:'/5X,'INITIAL VALUES OF THE '

I 'DIFFERENCING INTERVALS D1,D2,...,DN:'/51.58('-')
II/OX,1P12EIO.2)

924 FORMAT(/5X, 'INPUT DATA: '/5X, 'ABSOLUTE CONVERGENCE CRITERIA FOR '

* 'THE FUNCTION VARIABLES I1,X2,...,IN:'/51,70('-')
* /101. 1P12E10.2)

928 FORMAT(/5X,'INPUT DATA:'/5X, 'SCALING FACTORS FOR THE '

* 'FUNCTION VARIABLES X1,X2,...,IN:1/5X,56('-')
* /1OX,1P12E1O.2)

932 FORMAT(/5X,'INPUT DATA:'/5X,'INITIAL VALUE OF THE INVERSE 1,
* 'HESSIAN MATRII:'/51,440(-')

936 FORMAT(10I,1P12E1O.2)
940O FORMAT(lf1,14X,'OUTPUT DATA:'/5X,'THE RESULTS OF THE OPTIMIZATION '

* 'ROUTINE FOLLOW:'/51,117('-')//51,'f-I',1,'-F',1I,'#-G',
* 9X,'F1',9X,'F2',91,'Sl',9X,'52',9X,'X1',9X,'12',9X,'13',

- -' I 9X,'X'4',9X,'X5',9X,'X6l/

9i44 FORMAT(1H1,4X,'OUTPUT DATA:'/5X,'THE RESULTS OF THE OPTIMIZATION '

* 'ROUTINE FOLLOW:'/5X,117('-')//5X,1-I',1X,'#-F',11,'#-G',
* 9X,'F1',9X,'F2',9X,'S1',9X,'52',61,'X1/X7',61,'12/8',
* 61,'X3/X9',5X,'114/X1O',5X,'X5/I11',5X,'16/1120/

C
C READ CALIBRATION SPECIFICATIONS
C

READ(5,800) NDIM,NPM,IPRN,ICON,
* ICUB,IHES,NHES,ISCA,NSLN

* READ(5,8'4) EPFA,EPSA, C1,C2,C3,EPXL,EPFL,NFLX
READC5,808) ETAF,ETAX,DMIN,FDER,SFUN
READ(5,808) (X2(II),II:1,NDIM)
READ(5,808) (XL(II),IIX1,NDIM)
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READ(5,808) (XU(IIT),II=1,NDIM)
READ(5,808) (DX(II).,II.1,NDIM)
IF(ISCA.EQ.1) READ(5vB08) (SF(II),IIzI,NDIM)
IF(ICON.EQ.1) READ(5,808) (ZE(II),IIz1,NDIH)

C
C INITIALIZE INVERSE HESSIAN

DO 100 IIu1,NDfl1
DO 100 JJzI,NDIM
H2(II,JJ)=.O

100 IF(II.EQ.JJ) H2(II,JJ)z-1.0
IF(NHES.EQ.0) GO TO 130
A1=FLOAT(NRES)/14. 0
A2zAINT(AI)
IF(A1-A2.OT.0) A2sA2+1.0
NH=IFII(A2)
NX=NHES-40'(NH-i)
DO 110 II:1,NH
IF(II.LT.NH) JEAD(5,812) ((IRICH2(IR,IC)),JJzl, 4i)

110 IF(II.EQ.NH) READ(5,812) ((IR,IC,H2(IR,IC)),JJn1,NX)
DO 120 Ilzl,NDIN
DO 120 JJ=1,NDIM
IF(H2(II,JJ).NE.0.0) H2(11,JJ)=-H2(II#JJ)

120 IF(H2(UI,JJ).NE.0.0) H2(JJ,II)s H2(UI,JJ)
130 CONTINUE

C
C COMPUTE IMPRtOVED INITIAL ESTIMATES
C

IF(NSLN.EQ.0) GO TO 200
DO 190 II=1,NSLN
READ(5,816) PLAM,PKAP,PCON,PFAL,RIKR
IF(RI.EQ.0.0) RI=2.50
CALL NEWTON(PLH, PKAP,PCON, PFAL,RI)
0O TO (140,160), KR

1i40 DO 150 JJ:1,NDIM
150 IF(KOPT(JJ).EQ. 9) X2(JJ)zRI

00 TO 180
160 RC=0.O

DO 170 JJ=1.NDIM
IFCKOPT(JJ).EQ. 12) [[zJJ

170 IF(KOPT(JJ).EQ. 9) RC:12(JJ)
IF(RC.EQ.0) RCzPRPI(9)

[4 12(K)=RI/RC
180 CONTINUE
190 CONTINUE
200 CONTINUE

C
C ASSIGN DEFAULT VALUES
C

IF(C1.EQ.0.0) Cls9.OOE-01
IF(C2.EQ.0.0) C2zl.OOE-0I

K IF(C3.EQ.0.0) C3z..OE-01
IF(EPXL.EQ.0.0) EPnxlu.OOE-04
IF(ETAF. EQ. 0.0) ETAFaI . 0E-0iI
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IF(ETAI.EQ. 0.0) ETAX=1.OOE-08
IF(DHIN.EQ.O.0) DMIN=5.00E-03
IF(FDEB.EQ.0.0) FDER=l.00E-01
IF(SFUN.EQ.0.0) SFUN=1.OOE,00
SMAL=1.OOE-06
DO 210 II:1,NDIM

* KXT=12(II ).DI(II)
IF(IT.LE.XL(II)) DX(II)=ZL(II)-X2(II),SMAL

210 IF(XT.GE.XU(II)) DX(II)=4U(II)-X2(II)-ML
C
C PRINT INPUT DATA
C

WRITE(6,900)
WRITE(6,904) NDIM,NFMX,IPRN,ICON,ICUB,IHES,NHES,

ISCA,NSLN,EPFA,EPSA, Cl,C2,C3,EPXL,
* EPFL,NFLX,ETAX,ETAF,DHINFDERSFUN

WRITE(6,908) (X2(II),II=1,NDIM)
WRITE(6,9 12)
WRITE(6,916) (XL(II),II:1,NDIM)
WRITE(6,916) (IU(II),II:11D1)
WRITE(6,920) (DX(II),II:1,NDIM)
IF(ICON.EQ.1) WRITE(6,921) (XE(II),Ilz1,NDIM)

*IF(ISCA.NE.0) WRITE(6,928) (SF(II),II=1,NDIH)
IF(NHES.EQ.0) GO TO 230
WRITE(6,932)
DO 220 II=1,NDIM

220 WRITE(6,936) (-H2(II,JJ),JJ=1,NDIM)
230 IF(NDIM.LE.6) WRITE(6,910)

IF(NDIH.GT.6) WRITE(6,9 14)
RETURN
END

C
C
C

SUBROUTINE NEWTON(PRP1IPRP2,PCON,PFAL,RI)
C
C THIS SUBROUTINE COMPUTES AN INITIAL ESTIMATE
C OF THE SURFACE SHAPE PARAMETER R BY MEANS OF THE
C MODIFIED-NEWTON ROOT FINDING SCHIEE.
C
C WRITTEN BY ... DE NATALE,

*C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MAY 1982.

C 1=

ROxRI
DRzO.0
ER=1.OE-06
ALPHsPFAL/PCON
BETAzPRPI/(PRP2-PRPI)
Al UALPHOOBETA
A2zALPHff(2. OfBETA)

r 100O RlzRI
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IF(NI.GT. 100) RI=RO
IF(NI.GT. 100) RETURN

110 FF=2.0@(A1. A2).R1'(A2-2.O)*2.0'R 0 2-R1063
GG=A2-2.0..0*R1-3. 0*R*2

UF=FF/GG
UG=1.O-FMBH/0G**2
DR=UF/UG
R 1 R 1-DR
IF(ABS(DR).LE.ER) 00 TO 120
GO TO 110

C
C IF THE COMPUTED VALUE OF R IS
C BETWEEN 1.50 AND 3.50, THEN STOP
C

120 IF(R1.GE.1.5) GO TO 130
RI=RI+1 .0
GO TO 100

130 IF(R1.LE.3.5) GO TO 140
RI=RI-0. 5
GO TO 100

1410 RI=R1
RETURN
END

C
C
C

SUBROUTINE SEARCH
C
C THIS SUBROUTINE DIRECTS THE LINE-SEARCH
C COMPONENT OF THE GLOBAL MINIMIZATION ALGORITHM.
C THE LOGIC IS PATTERNED AFTER THAT OF FLETCHER (1980).
C
C WRITTEN BY J.S. DE NATALE,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MAY 1982.
C

COfO4ON/BLK2/NDIM, NFMI, Cl 1,C2, C3
COHMN/BLR3/NI,NF,NG,F1,F2,S1,S2,X11(17),12(17)
COIION/BLKI/EPFA,PSA,ICON,JCON,IPRN,ICUB,IE(17)
COMMO/BLK/D(1),D2(17),G(1),G2(17),DG(17),DX(17),

I Hl(17,17),H2(17,17)
4 COHMN/BLK6/EPFL, EPIL, NFLI

COIO4N/BLK7/SFUN,SF(17),IL(17),IU(17)
DIM4ENSION DM(17),XM(17)

C

C INITIALIZE AND UPDATE PARAMETERS
FENDu-F2
31:31+1

A2zl.OOE+06
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Si :S2
DO 100 II=1,NDIM

Ii (II)=G2(II)

DO 100 JJ=1,NDIM

C100 B1(IIJJ)=H2(IIJJ)

C ESTABLISH AN INITIAL VALUE OF ALPHA
C

IF(NI.EQ. 1) DF=F1
Zi: 10. OEPFA
IF(DF.LT.Z1) DF:Zl
AA= 1.0
Z1:-2.0'DF/S1
IF(AA.GT.Z1) AA=Zl
IF(LEND.EQ.1.AND.LPAS.SQ.0) AA:1.O

C
C EVALUATE THE FUNCTION F(Xl,X2,....ZXN),
C BUT TERMINATE THE LIKE SEARCH IF THE CHANGE IN
C X,X2,...,XN IS SMALL
C

LPAS:0
200 IF(NF.GE.NFHX) GO TO 500

LEND: 1
DO 210 II=1,NDIM

DX(II)=AA*D1(II)
X2(11 )=I1(II )+DX(II)

IC:ABS( (X3-111)/X3)
210 IF(ZC.GT.EPXL) LENDs0

IF(LEND.EQ. 1.AND.LPAS.EQ. 1) GO TO 420
F2%FFUN (12)
NFzNF+ 1

C CHECK THE FAIL-SAFE EXIT CRITERION
C AND TERMINATE THE GLOBAL SEARCH IF THE
C FUNCTION IS NOT BEING SIGNIFICANTLY REDUCED
C

IF((F1-F2).GT.EPFL) IX=NF
IF((NF-IX).GT.NFLX) GO TO 500
IF(LEND.EQ.1) GO TO 300

0 C
C CHECK TO SEE THAT ALPHA IS WITHIN THE
C ACCEPTABLE INTERVAL. CHECK UPPER BOUND
CI. DFFl-F2

Zls -C20AAOS1
IF(DF.GE.Zl) GO TO 300

C
C CHECK FAILS. COMPUTE AN ACCEPTABLE VALUE BY
C QUADRATIC INTERPOLATION
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C
IF(IPRN.EQ.3) CALL PANOUT(INDIH)
ZlvAA-Al
2u2.0f(1.Oe.DF/(Z 1631))
AH=A1.Z1/Z2

C
C UPDATE BRACKET
C ENSURE THAT ALPHA IS NOT NEAR THE EXTREMES
C

A2zAA
Z2=C3%Z 1
IF(AR.LT. (Al+Z2)) A~zA142
IF(AH.GT.(&2-Z2)) AHuA2-Z2
AAxAH
GO TO 200

C
C CHECK SUCCEEDS. EVALUATE THE GRADIENT AND SLOPE
C

300 DO 310 IIu1,NDIH
10211
D(II)xDI(II)

310 G2(IG)xGFVN(IGO,NDIN)
NGzNG, 1
S2zDTMRD(G2,D1 ,NDIN)
FH=72
SN:52
IF(LEND.EQ.1) G0 To 400

C CHECK TO SEE THAT ALPHA IS WITHIN THE
C ACCEPTABLE INTERVAL. CHECK LOVER BOUND
C

LPAS1l
IF(S2.GE.(CI'S1)) GO TO 350

C
C CHECK FAILS. COMPUTE AN ACCEPTABLE VALUE
C BY QUADRATIC EXTRAPOLATION
c

IF(IPRN.EQ.3) CALL PRNOUT(1,NDIN)
Zl=AA-A1
Z2rS2/ (S 1-32)
AHaAA+Zl1 Z2

C UPDATE BRACKET
C ENSURE THAT ALPHA IS NOT NEAR THE EXTREMES
C

Z2zC34Z 1
IF(AH.LT. (AA+Z2)) AHxAA+Z2
Z2z9.0*Z1
IF(AH.GT. (AA+Z2)) AHPAA+Z2

4 Z2u(A2-AA)/2.0
IF(AH.OT. (AA+Z2)) AHsAAZ2
AlwAA
AAzAH
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F1:F2

C GO TO 200

C RE-CHECK LOWER BOUND IF THE
C STRICT TER14INATION CRITERION IS EMPLOYED
C

350 IF(ICUB.EQ. 1) GO To 4100
IF(ABS(S2).LE.(-C1*Sl)) GO To 4100

C
C CHECK FAILS. COMPUTE AN ACCEPTABLE VALUE
C BY CUBIC INTERPOLATION
C

IF(IPRN.EQ.3) CALL PRNOUT(1,NDIM)
Z1:AA-A1

CCs (S2-S1.3. ODD'(A1O'2-AA*92) )/(2. O'ZI)
BB: (AA@S1-A10S2+3. O'DD'A1*AA§Z1 )/Z1
AH:BB/(-CC-SQRT (CC'CC-3. 0'BB'DD))

C
C UPDATE BRACKET
C ENSURE THAT ALPHA IS NOT NEAR THE EXTREMES
C

A2=AA
Z2=C3*Zl
IF(AH.LT. (Al+Z2)) AH=A1.Z2
IF(AH.GT. (A2-Z2)) AH=A2-Z2
AA=AH
GO TO 200

C
C TERMINATE THE LINE SEARCH. CHECK FOR CONVERGENCE
C

400 CONTINUE
IF(IPRN.GE.2) CALL PRNOUT(1,NDIM)
IF(LEND.EQ.0) GO TO 4430
IF(LPAS.EQ. 1.OR.F2.LE.F1) GO TO 4120
F2zFl
S2=S1
DO 4110 II=1,NDIM
B7=11 (11)
X1I(11 )xX2(II)
X2(IIW=R7
R7=G1 (II)

4110 G2(II)zR7
GO TO 4410

3120 F2=FM
S2zSM
DO 4130 IIul,NDIM
DX(II)uDH(II)

4130 X2(II)xD4(II)
4430 CONTINUE

DF=FEND-F2

JCON:O
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CALL CONCHK(DF,S2,DXPNDIM)
IF(IPRN.EQ. 1.AND.JCON.EQ. 1)

CALL PRNOUT(1,NDIM)
IF(JCON.EQ.1) CALL PINOUT(5,NDIM)
RETURN

500 CONTINUE
JCON1
CALL PRNOUT(1 ,NDIM)
IF((NF-IX).LE.IFLX) CALL PRNOUT(2,NDIN)
IF( (NF-IX).OT.NFLI) CALL PRNOIJT(4,NDIM)
RETURN
END

C
C
C

SUBROUTINE BPGSUP (52,IH ,NI ,NDIM)
C
C THIS SUBROUTINE UPDATES THE HESSIAN MATRIX BY
C MEANS OF THE BFGS (BROYDEtI-FLETCHER-GOLDFARB-SHANNO)
C UPDATING FORMULA. THE NEW LINE-SEARCH DIRECTION
C IS ALSO COMPUTED.
C
C WRITTEN BY J.S. DR NATALE,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OP CALIFORNIA, DAVIS.
C VERSION I: MA! 1982.

CO0ION/BLK5/D1 (17),D2(17),G1(17),02(17),DG(17),DX(17),
* Hl(17,17),H2(17,17)

DIMENSION SV(17),SM(17,17)
C
C UPDATE THlE INVERSE HESSIAN MATRIX
C

DO 100 II:1,NDIM
100 DG(II)=02(II)-G1 (II)

CALL HVPROD(Hl,DG,SV,NDIN)
ALPHaDTPROD (DO,SV, IDIM)
48=1.0
IF(ALPH.GT.0) ASz-AS
BETA:DTPROD (DI, DO,NDIM)
IF(IH.EQ.O) GO TO 120
IF(NI.EQ.1) XCmO
IF(NI.OT.l.AND.IC.ZQ.0) G0 TO 120
OAI4Ax -BETA/ALPH
DO 110 Ilm1,NDIM
DO 110 JJu1,NDIM

110 H1(II,JJ)zHl(II,JJ)OGAMA
*120 CONTINUE

DO 130 Ilm1,NDIM
130 SV(XI)zSQRT(ABS(ALPH))'(DX(II)/BETA-SV(II)/ALPH)

CALL VVPROD(SV,SV,SN,NDIM)
DO 140 IIzl,NDIM
DO 140 JJ&:1,NDIM

140 H2(11,JJ)uHl(II,JJ)-SM(IIJJ)'AS
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CALL MVPROD(Hl,DG,SVNDIM)
CALL VVPRODCSV,DG,SMINDIM)
CALL ItIPROD(SM,HI,SV,NDIN)
DO 150 Ilu1,NDIM
DO 150 JJs1,NDIM

150 R2(II,JJWuR2(I1,JJ)-B1(II,JJ)/ALPB
CALL VVPROD(DX,DZ,SM,NDIH)
DO 160 IlslENDIM
DO 160 JJ=1,NDIM

160 H2(II,JJ)sH2(II,JJ)-SM(1I,JJ)/BETA
C
C COMPUTE A NEW SEARCH DIRECTION
C

CALL MVFROD(H2,G2,D2,NDIM)

C IF THE NEW COMPUTED SEARCH DIRECTION IS NOT
C A DESCENT DIRECTION, SET THE INVERSE HESSIAN
C TO THE IDENTITY MATRIX AND RESTART THE SEARCH
C

IC:O
S2=DTPROD (02, D2,NDIM)
IF(S2.LT.O.O) GO TO 190
IC=I1
DO 170 II:1,NDIM
DO 170 JJzl,NDIM

170 H2(II,JJ)= 0.0
DO 180 II=1,NDIM
I0:1I
G2(IG)=GFUN(IG,1,NDIM)

180 H2(II,II)=-1.0
CALL MVPROD(H2,G2,D2,NDIM)
CALL PRNOUT(3,NDIM)
S2=DTPROD(G2, D2,NDIM)

190 CONTINUE
RETURN
END

C
C
C

SUBROUTINE CONCHE (FV , S, IV,ND)
C
C THIS SUBROUTINE CHECKS FOR CONVERGENCE.
C

COMMON/BLK'I/EPFA,EPSA, ICON,JCON, IPRN, ICUB, IE( 17)
DIMENSION XV(17)
JCONZ1
GO TO (100,200,300), ICON

100 DO 110 IIzIND
IF(ABS(IV(II)).GT.XE(II)) JCONuO
IF(JCON.EQ.O) RETURN

110 CONTINUE
RETURN

200 IF(ABS(FV).GT.EPFA) JCONxO
RETURN
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300 IF(ABS(SV).GT.EPSA) JCON=0
RETURN
END

C
C
C

SUBROUTINE PRNOUT (IP, ND)
C
C THIS SUBROUTINE CONTROLS THE
C PRINTING OF THE MINIMIZATION SEARCH RESULTS.
C

COW4ON/BLK3/NI,NF,NGF1,F2,S1,52,11 (17),12(17)
CONION/BLK7/SFUN,SF(17),XL(IT),XU(17)
DIMENSION ZS(17)
GO TO (00v200,3OO,400,500), IP

100 DO 110 IlzuiND
IS(II)zX2(II)/SF(II)

110 ES(II)zIL(Il)+(ZU(II)-ZL(Il))'(SIN(IS(II)))*02
IF(ND.LE.6) WRIT3(6,120) NI,NFNO,F1,F2,S1,52,

* (IS(II),II=ulND)
IF(ND.GT.6) WRITE(6,130) NI,NF,NG,FI7F2,S1,S2,

* (ZS(II),I131,ND)
120 FORMAT(51,I3,2111,1P1031.3)
130 FORMAT(5X,l3,21i,P1OE11.3/601,6E11.3)

RETURN
200 VRITE(6,210)
210 FORMAT(/5,1,""" NO ADDITIONAL ',

* 'FUNCTION EVALUATIONS ARE PERMITTED 0#06#/)
RETURN

300 WRITE(6,310)
310 FORMAT(/5X1'*t THE INVERSE HESSIAN HAS t,

4 'BEEN RESET TO THE IDENTITY MATRIX 60006I)
RETURN

4100 WRITE(6,4I10)
4110 FORMAT(/51,'**"* THE SEARCH HAS BEEN TERMINATED ',

* 'DUE TO INSUFFICIENT PROGRESS 09000/)
RETURN

500 VRITE(6,510)
510 FORHAT(/51,'***"9 THE SEARCH HAS BEEN ',

* 'TERMINATED AS A RESULT OF CONVERGENCE 90909'/)
RETURN
END

C
4 C

C
FUNCTION DTPROD(V1 ,V2,ND)
DIMENSION V1(17)9V2(17)
DTPRODxO. 0
DO 100 IIxl,ND

4 100 DTPRODzDTPROD+V1 (II )fV2(II)
RETURN
END

C
C
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C
SUBROUTINE VVPROD(V1 ,V2,V3,ND)
DIMENSION VI(17),V2(17),V3(17,l7)
DO 100 lI12iND
DO 100 JJzlND

100 V3(II,JJ)=V1.11I)OV2(JJ)
RETURN
END

C
C

SUBROUTINE ?4VPROD(V3,VI ,V2,ND)
DIMENSION Vl(17),V2(17),V3(lT,17)
DO 100 II=1,ND
V2(II)=O.O
DO 100 JJ=1,ND

100 V2(II)2V2(II)+V3(II,JJ)*V1(JJ)
RETURN
END

C
C
C

SUBROUTINE MNPROD(V3,VI,V1 ND)
DIMENSION V1(17),V3(17,17),VII(17,17)
DO 110 JJ=1,ND
DO 100 IIziND
V1(II)=O.O
DO 100 K~ziND

100 VI(II)zVl(Il),V3(II,KK)@V4(KJJ)
DO 110 IliND

110 VZ(IIJJ)=Vl(II)
RETURN
END

C
C
C

FUNCTION FFUN(lX)
C
C THIS FUNCTION SUBROUTINE ESTABLISHES
C THE VALUE OF THE OBJECTIVE FUNCTION AT
C THE SPECIFIED LOCATION.
C

COHMN/BLK7/SFUN,SF(17),IL( 17),IU(17)
DIMENSION XX(17)
CALL EVAL(lXFF,O)
FFUN:FFOSFUN
RETURN
END

C
C
C

FUNCTION GFUN(IV,IR,ND)
C
C THIS FUNCTION SUBROUTINE ESTIMATES THE GRADIENT OF
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C THE OBJECTIVE FUNCTION BY MEANS 0F FINITE DIFFRENCES.
C THE LOGIC FOLLOWS THAT OUTLINED BY STEWART (1967).
C
C WRITTEN BY J.S. DE NATALS,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C VERSION I: MAY 1982.

COHMN/ELK 1/ETAF, ETAX, DMIN, IDER
CONMON/BLK3/NI,NF,NG,FI12,31,52,11 (17),12(17)
COIION/BLK5/D1(17),D2(17),GI(17),G2(17).D(17),DX(17),

11(7,17),H2(7,17)
DIMENSION X1(17)

C
C COMPUTE INITIAL GRADIENT VECTOR. RECOMPUTE
C INITIAL GRADIENT VECTOR IF THE SEARCH HAS BEEN RESTARTED
C

DO 100 II=1,ND
100 Xl(Il)zX2(II)

IF(IR.EQ.O) GO TO 110
DD:DI4IN
GO TO 160

110 IF(NG.GT.0) GO TO 120
XX(IV):12(IV)eDI(IV)
Z1:FFUN(XX)
GFUNc(Zt-F2)I'DX(IV)
NFzNF.1
RETURN

C
C COMPUTE SUBSEQUENT GRADIENT VECTORS
C

120 CONTINUE
R1:1.OE-10
R2:1.OEO00
IF(ABS(G1(IV)).LT.Rl) G1(IV)sR1'SIGN(R2,G1(IV))

C
C ESTABLISH GOVERNING ERROR BOUND
C

ETAAzETAF
ZI=ETAX*ABS(G1 (IV)*X2(IV)/F2)
IF(ETAA.LT.Z1) ETAA41l

C
C ESTABLISH DIFFERENCING INTERVAL

ZisGI (IV)002
Z2zETAAOABS(12 (IV, IV) 12)
IF(Z1.LT.Z2) GO T0 130
ZlaABS(72/H2(IV#IV))000.5
D0x2. OfZ
ZleDOVABS(H2(IV,IV))

DD0DOO(.O-Z1/2)
00 O 0

130 Z~uABS(F26G(V)/2(IV,IV)2)*(1.0/3.0)
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DO=2. 0*Zl
Z1=2.0'ABS(Gt (IV))
Z2=2.O*ABS(H2(IV,IV) )'DO.2.OOBZI
DD=DOG( 1.O-Zl/Z2)

140 IF(ABS(DD).LT.DMIN) DDzDI4IN*SION(R2,DD)
DD=DD'SIGN(R2,GI (IV))@SIGN(R2,-H2(IV,IV))

C
C DECIDE ON THE MOST
C APPROPRIATE DIFFERECING FORMULA TO EMPLOY
C

ZI=AES(H2(IV,IV)#DD/G1 (IV))/2.0
IF(ZI.GE.FDER) GO TO 150

C
C FORWARD DIFFERENCES
C

XX(IV)=X2(IV)+DD
Zl=FFUN(XI)
GFUN= (Zl-F2)/DD
NF=NF.1
RETURN

C
C CENTRAL DIFFERENCES
C

150 AA=ABS(H2(IVIV))/2.0
BB=ABS(G1 (IV))
CC=-ETAA'ABS (F2 )/FDER
DD= (2. O'CC)/ (-BB-SQRT(B'BB-4. 0'AAOCC))
IF(ABS(DD).LT.DMIN) DDzDMIN*SIGN(R2,DD)

160 XX(IV)=X2(IV)+DD
Zl:FFUN(XX)
NF=NF. 1
XX(IV)=12(IV)-DD
Z2=FFUN(XX)
NF=NF+l
GFUN= (Z1-Z2)/(2. OODD)
RETURN
END

C
I C

C
SUBROUTINE OPEN

C
C THIS SUBROUTINE ASSIGNS AND OPENS FILES 5
C AND 6. PROMPTS ARE SENT TO THE TERMINAL (FILE 4).
C

DIMENSION IFIL(21)
WRITE(4, 100)

100 FORMAT(1I,'INPUT DATA FILENAHE=?',$)
READ(4110) IFIL

4 10OPEN(UNIT5NA4EtIFILTYFE'IOLD')

WRITE(4, 120)
120 FORMAT(1X,OUTPUT DATA PRINT FILENANE=?',*)

READ(4110) IFIL
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OPEN(UNIT.6,NAHEzIFIL,TYPEu 'NEW')
RETURN
END

C
C

SUBROUTINE EXIT
C
C THIS SUBROUTINE CLOSES FILES 5 AND 6
C AND TERMINATES EXECUTION OF THE PROGRAM.
C

CLOSE (UNIT=5)
CLOSE (UNIT=6)
STOP
END

C
C
C

C S S
C * THE REMAINING TWO SUBROUTINES -- CLAY & *
C 9 BOUNDS -- ARE A NUMERICAL IMPLEMENTATION 6
C * OF THE GOVERNING CONSTITUTIVE EQUATIONS 0
C a FOR THE BOUNDING SURFACE SOIL PLASTICITY 9
C 0 MODEL
C

C
SUBROUTINE CLAY(IDIM, INC, ITNO, PROP,STOR,SIGBM,EPM,

* DSIGM,DEPM,C,UB,DLTAU,GAM,KIND,LARGE)
C
C THIS SUBROUTINE EVALUATES YANNIS DAFALIAS'
C BOUNDING SURFACE PLASTICITY MODEL FOR CLAY SOILS.
C
C WRITTEN BY L.R. HERRMANN,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C LAST REVISED: JULY 1982.
C

DIMENSION PROP(21 ),STOR(6),SIGB(6),DSIG(6),DP(6),C(6,6),
* SB(3,3),SF(3,3),II(6),DLTA(33),DEPM(6),
* SIGB(6),DSIGM(6),DEPT(3,3),IPM(6),EPB(6)
DATA II/11,22,33,12,13,23/, DLTA/1.0,30.0,1.0,300.0,1.0/
ALFUN(CV,RT,SINV),2.OSRTICV/(1.0+RT-(1.O-RT) SINV)
S:ALLO. 000 1PROP (8)
DO 100 l1t,6
SIGB(I )SIGBM(I)
DSIG(I)rDSIOH(I)
EPB(I)WEPH(I)

100 DEP(I)mDEPM(I)
'4 IF(ITNO.GT.1) O TO 120

IF(INC .GT.1) O0 TO 110
C

C INITIALIZE HISTORY
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C
STOR(1 )=PROP(21)
STOR(2)=STOR( 1)
STOR(3)=0.50(SIGB(1 )eSIGB(2))
STOR(41W0.01*PROP(8)
STOR (5) =0.0
G0 TO 120

C
C UPDATE HISTORY
C

110 STOR(1)=STOR(2)
STOR(3)=STOR(3).STOR(1)
STOR (5 )=STOR (5 ).STOR (6 )

C
C CONVERT FROM PLANE STRAIN TO 3-D
C

120 IF(IDIM.EQ.3) GO TO 140
SIGB(41)-SIGB(3)
SIGB(3)=STOR(3)

DSIG(3)STOR(I)
DEP (1) :DEP(3)
DEP(3)=0.0
EPB(41)mEPB(3)
EPB (3)=0.0
DO 130 1=5,6
SIGB(I)=0.0
DSIG(I)=0.0
EPB(I)=0. 0

130 DEP(I)=0.0
C
C DETERMINE 3-D INCREMENTAL PROPERTIES
C

1410 GAH=PROP(6)
C
C CALCULATE EFFECTIVE STRESS INVARIANTS AND
C DISTORTIObAL STRESS AND CHANGE MATRIX COMPONENTS
C TO TENSOR COMPONENTS.
C

XIB=0. 0
XIF=0. 0
DDIL=0. 0
DILB=O. 0

* DO 150 1.1,3
DDIL=DDIL+DEP (I)
DILB=DILBEPB (I)
XlD=IIBoSIGD (I)

150 XIFszIF.SIGB (I ).DSIG (I)
VOID~xl. 0*PROP(20)

* VOIDPzVOIDB
IF(LARGE.EQ.O) 00 TO 160
VOID~zVOIDD'EXP (-DILB)
VOIDFzVOIDFfEXP (-DILB-DDIL)

160 DO 170 NzI,6
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J=MD(II(1),10)
SB(I,J)uSXGB(N)-XIB'FDLTA(I,J)/3. 0
SB(J,I)=SD(I,J)
DEPT(I,J).DEP(N)'(1 . 0DLTA(I,J))'0.5
DEPT(J,I)sDEPT(I,J)
SF(I,J)=SIGB(N),DSIG(N)-DLTA(I,J)'ZIF/3. 0

170 SF(JI).SF(I,J)
GAMP=0.O
IF(IND .EQ. 0) GO TO 180
GAMPxGAJ
UB=STOR(5)

* DLTAU=GAH'DDIL
180 ID=IB-UB#3.0

XIFzXIF-(UB.DLTAU )93. 0
STOR(6)=DLTAU
SRTJB=0.0
SRTJF=0. 0
DO 190 Iz1,3
DO 190 Jz1,3
SRTJBzSRTJB+SB(I,J)OSB(I,J)

190 SRTJF=SRTJF+SF(I,J)GSF(I,J)
SRTJB=SQRT (0. 5SRTJD)
SRTJF=SQRT(0. 5*SRTJF)
SCUB=0. 0
SCUF=0.0
DO 200 Iml,3
DO 200 Jzl,3
DO 200 Kz1,3
SCUD=SCUB+SB(I,J)'SD(J,K)*SD(K.1)

200 SCUF:SCUF*SF(I,J)'SF(J,K)*SF(K,I)
SCUD=SCUB/3.0
SCUF=SCUF/3. 0
S33*1=.0
IF(SRTJB. OT.SKALL) SN3AB..5'SQRT(3. 0)'SCUB/SRTJB*'3
IF(SN3AB.GT. 1.0) SN3AIz 1.0
IF(SN3AB.LT.-I.0) SI3ABz-1.0
SN3AF=O. 0
IF(SRTJF.OT.SMALL) SN3AF= . 5*SQRT(3. O)'SCUF/SRTJFP"3
IF(SN3AF.GT. 1.0) SN3AF. 1.0
IF(SN3AF. LT. -1.0) SN3AFz-1 .0
CS3ABxSQRT( .0O4N3AB"*2)
CS3AFaSQRT( 1.0-S3A*2)

c
C AVOID ZERO MEAN PRESSURE
c

IF(ABS(flB).OT.SMALL) 00 TO 210
DUsID
XIBzSKALL
IF(DU.LT.0.0) Ilha-SKALL

210 IF(ABS(IIF).OT.SHALL) 00 TO 220
DUsuI
IFaSHALL
IF(DU.LT.0.0) lFin-SKALL
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*220 CONTINUE
C
C CALCULATE ELASTIC PROPERTIES
C

DUl1 VOIDB/3. 0/PROP (2)
DU2:1. 50(1.0-2.0OQROP(5) )/( 1. 0.PROP(5))
DU=XIB
IF(DU.LT.PROP(7)) DU=PROP(7)
BD:DU1IDU
GB=DU2*BB
IF(PROP(5).GT.O.5) GB=PROP(5)
DU1=VOIDF/3. O/PROP(2)
DUzZIF
IF(DU.LT.PROP(7)) DU=PROP(7)
BF:DU 1 DU
GFzDU2*BF
IF(PROP(S).GT.O.5) GF=GB
DO 230 M=~1,6
I=II(M)/10
J=MOD(II (K), 10)
DO 230 1=14,6
X:11(N)/lO
LuHOD(II (N), 10)
DU1:DLTA(K,I)@DLTA(L,J).DLTA(K,J)GDLTA(I,L)
C(N,N): (GB.GF)ODU100. 5.0. 56 (BBeBFe2.OOGAMP-2. O'(GB.GF)/3. 0)
0 fDLTA(I,J)fDLTA(K,L)

230 C(N,M)=C(M,N)
C
C CALCULATE SIZE OF BOUNDING SURFACE
C

XIOB=STOR (1)
XIOF=STOR (2)
XIL=PROP (7)
DU1O=1 .0/(PROP(l1)-PROP(2))
IF(XIOB.GE.XIL.AND.XIOF.GE.XIL) 0O TO 240

IF (XIOB. LT.IL) IIOBS=XIL
XIOFS:XIOF
IF(XIOF. LT.IL) XIOFSzXIL
XIOF=IIOB.DU 10'0.5 ( (XIOFS'VOIDF.1IODSGVOIDD)'DDIL-
* (XIOBSSVOIDB/BB4.IIOFSGVOIDF/BF)*(XIF-XIB)13. 0)
GO TO 250

240 XIOFzXIOB'EXP(DU1000. 5*( (VOIDB.VOIDF)ODDIL-
0 (VOIDB/BBiVOIDF/BF)'(XIF-XIB)/3. 0))

250 STOR(2)xXIOF
IF(INC+ITNO.EQ.2) 00 TO 410

C
C CALCULATE BOUNDING SURFACE PROPERTIES
C

CALL DOUNDS(PROP,SRTJB,sN3AB,XSDIIOD,I,GANB,DFIB,
* * DFJBIKSB,DFALB,DFJ.JB,35B,VOIDB)

CALL BOUNDS(PROP,SRTJF,SN3AF,ISF,XIOF,IIFGANF,DFIF
* DFJF,XKSF, DFALF, DFJJFBSFI VOID?)

DBuBSB-1.0
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':1 IF(DB .LT. 0.0) DD:0.0
DF=BSF-1.O
IF(DF.LT. 0.0) DFzO. 0

C
C CALCULATE PLASTIC MODULUS
C CHECK FOR ELASTIC ZONE AND UNLOADING

* C
* XMS=ALFUN(PROP(17),PROP(19),SN3AB)

DU7zO.000106( 1.0/INS)
LBzO
DDD= 1. 0+DB*( 1. 0-PROP (15) )
IF(DDD.LE.0.0) GO TO 290
LB= 1
HALFUN(PROP( 16),PROP( 18),SN3AB)
DU=ABS (188)
IF(DU.LT.DU7) DUzDU7
DUS=9. 0 DPIB"I2.DFJB*92/3. 0
DU9=XIOB
IF(I0.LT.XIL) DU9mZIL
XKB=XKSB+H*DB/DDD (1.0.1. 0/DUIIDIS )'DU8'DU9'DUlOeOmIB
DU1:3. 0*BB*DFIB
DU2=GB*DFJJB
DU2PzSQRT (3.0 )*GB*DFALB
DU3:IKMe-9. 0BB6DFIBOS2GODFJBO2.GBO (DFALBOCS3AB ) 02
SUN=0O
TlzO.0
IF(SRTJB.EQ.0.0) GO TO 260
DO 270 I=1,3
DO 270 Jz1,3

* DU:0.0
DO 260 K=1,3

260 DU=DU4SB(I,K)*SB(KJ)
TIzT1.t(DU-1 .5*SCUB'SD(I,J)/SRTJBO'2)'DBPT(I,J)/SRTJB..2

270 SUM=SUM..88(I,J)ODEPT(I,J)
T1=T1-2. 0*DDIL/3. 0

280 DU: (DU1ODDILDU2'SUI1,DU2P.T )/DU3
IF(DU.LT.0.0) 1.8:0

290 LFzO
DDD=1.0*DPI(1.0-PR0P(15))
IF(DDD.LE.O.0) GO TO 330
LFzl
H=ALFUN(PROP( 16),PROP( 18),SN3AF)
DUzABS (XSF)
IF(DU.LT.DU7) DUzDU7

* DUS:9.0*DFIF*2+DFJF*02/3.0
XHSuALFUN(PROP(17),PROP(19),SN3AF)
DU9zXIOF
IF(IXOF.LT.IIL) DU9uIIL
IKFzKKSF*I3'DF/DDD'( 1.0.1. 0/DU"D48B)'DU8ODU9'DU101VOIDF
DW4z3. 0*BFODFIF
DU5xGF*DFJJF
DU6sIKF.9. 0'BF'DFIF'02N3F'DFJFOO2.074(DFALFOCS3AF)e.2
DU5PuGFODFALF9SQRT(3. 0)
SUNMO. 0
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T1.O.O
IF(SRtTJF.EQ.0.0) 00 TO 320
DO 310 lx1,3
DO 310 Jx1,3
DU:0.0
DO 300 Kz1,3

300 DU=DU+eSF(I,K)OSF(K,J)
T1:Tl.(DU-1 .5SCUFSF(I,J)/SRTJF"2)DPT(I,J)/SRTJF**2

310 SUM=SUNl+SF(I,J)4DEPT"(I,J)
TI=T1-2.0*DDIL/3. 0

320 DUz(DU11'DDIL+DU5*SUM.DU5P'T1 )/DU6
IF(DU.LT.0) LFr:O

C CALCULATE PLASTIC PORTION OF INCREMENTAL PROPERTIES
C

330 IF(LF*LD.EQ.0) 00 TO 4110
DO 1100 Mm 1, 6

J:MOD(II (N).10)
DO 4100 N=M1,6
KSII(N)/10
L=HOD(II (N), 10)
DU=0.6
IF(LB.EQ.0) 0O TO 360
T2:0.0
T1=0.0
IF((SRTJB*04).EQ.0.0) GO TO 350
DO 3410 LLz1,3
T2=T2+eSB(K, LL)OSB(LL,L)

3410 T1:T1..SB(I,LL)OSB(LLJ)
TImDU2P(T/SRTJB"*2-1.5'SCUB'SB(I,J)/SRTJDO'11-2. 0'DLTA(I,J)/3. 0)
T2=DU2P'(T2ISRTJB"02-1 .5'SCUB'SB(KL)/SRTJB"11-2. O*DLTA (KL)/3. 0)

350 DU:-0.5(DU@DLTA(IJ)DU2@SB(IJ)T)(DU@DLTA(K,L).
a DU20SB(K,L)+T2)/DU3
IF(LF.EQ.0) GO TO 390

360 T2z0.0
Tlu0O0
IF((SRTJFG*1).EQ.0.0) 0O TO 380
DO 370 LLz1,3
T2zT2+SP(K,LL)ISF(LL,L)

370 T1=TI+SF(I,LL)OSF(LL,J)
T1=DU5?I(TISRTJFOO2-1 .5'SCUFOSF(I,J)/RTJF*'11-2. OODLTA(I,J)/3. 0)
T2uDU5P(T2/SRTJF02-1. 5*SCUF*SF(K,L)/SRTJF*'11-2. 0'DLTA(K,L)/3. 0)

380 DU.DU-0.50(DU11'DLTA(I,J),DU5SF(I,J),Tl)(DU1'DLTA(K,L)+
a DU5§SF(K,L)+T2)/DU6

- 390 C(M,N)xDU..C(M,N)
1100 C(N,11)uC(K,N)
4110 CONTINUE

IF(IDIN.EQ.3) RETURN
C

*C CONVERT 3-D PROPERTIES TO PLANE STRAIN
C

DUzO.0
DO 4120 W94,1
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DUxC(3, I)9DEP(I)+DU
C(3,I)uC(11,I)

4120 C(1,1I)a0.O
DO 4130 1.1,3
C(I,3)=C(I,11)

4130 C(I,11)zO.0
STOR (11)=DU
RETURN
END

C
C
C

SUBROUTINE BOUNDS(PROP,SRTJ,3N3A,I,XIO,XI,OAN,
0DFI tDFJ, 11S, DFAL, DFJJ t BSVOID)

C
C THIS SUBROUTINE EVALUATES THE RELATIONSHIP OF THE
C STRESS STATE TO THE BOUNDING SURFACE, AS REQUIRED BY
C SUBROUTINE CLAY.
C
C WRITTEN BY L.R. HERRMANN,
C DEPARTMENT OF CIVIL ENGINEERING,
C UNIVERSITY OF CALIFORNIA, DAVIS.
C LAST REVISED: JULY 1982.
C

DIMENSION PROP(21),F'SS(3)
ALFUN(CV,RT,SINV)2.ORTCV/(.O+RT-(.0-RT)OSINV)
DFUN(FUN,RT,FUC)zFUN'2(1.0-RT)/(2.0'RTFUNC)
IN=ALFUN(PROP(3),PROP(41)oSN3A)
DNAL=DFUN (XN, PROP(41),PROP(3))
RuALFUN (PROP (9 ) ,PROP( 12) ,SN3A )
DRAL=DFUN(R,PROP(12),PROP(9))
AzALFUN(PROP( 10),PROP( 13),SN3A)
DAAL:DFUN (A, PROP( 13), PROP( 10) )
YS=R*A/IN
CC=PROP(111)
IF(CC.GT.O.999) CC=0.999

C
C SHIFT PROJECTION POINT
C

Dl z11410*CC
IF(ABS(D1).LT.O.001) DlzO.001
D2zCC-1. O/R
D3zD1OD2
D5xCC*(CC-2. 0/U)
Q zSRTJ/D1



IF(Q .LZ. QC) GO TO 120
IF(Q .Gl. QO) 00 TO 140
GO TO 130

110 IF(Q OR1. QC) 00 TO 130
IF(Q .01. 0.0) 00 TO 120
IF(Q .LE. QO) 00 TO 130
00 TO 140

C
C PROJECTION ON ELLIPSE 1
C

120 DJ&D1D1((R-1.O)*SRTJ/ZN)*42
DsxXIO0(-D3e-SQRT(D30D3-DaO(D5*(2.0-R)/R)) )/D4
LOST. 1
GO TO 150

C
C PROJECTION ON HYPERBOLA
C

130 D6=SRTJ#( 1. /R+AIIN)/ZN
D7=D3+D6
D8=D1'D1-(SRTJ/IN)0*2

* BS=-0.501109(D5-2.0*A/R/ZN)/D7
IF(D8.EQ.0.0) GO TO 150

* DBS=IIO'(-D7eSQRT(D7'D7-D80(D5-2. 0*A/R/IN)) )/D8
LOST. 2
GO TO 150

C
C PROJECTION ON ELLIPSE 2
C

1i40 TzPROP(11)
FOPzXN/SQRT( 1. 0.TS*2)
ZJO=A' (1 . 0YS-SQRT (1. 0YS"*2) )/YS
BTzT' (XJO-T'FOP )/I(IJO-2. 0@T'FOP)
RO: (DT-T)/POP/XJO
PSI=1.0/(RO(BT-T))
D9=T-BT+CC
DlOxD1'D9
Dl 1.D1*D1.ROOSRTJGSRTJ
BS=1IO'(-D1Oe.SQRT(D1O'D1O-D11'(D9*D9-DT@IT)))/D11
LOST=3

150 ZIBAR:BSO (11-110*CC )+IIOOCC
IF(IAR.EQ.0.0) XIBARa1.OK-20
TII=BS9SRTJ/IAR
Z=TH/XN

* DU=11O
IF(ZIO.LT. PROP(7)) DUsPROP(7
DUS. 12. 0*VOID/(PROP( 1)-PROP(2) )'X9*62*DG
GO TO (200,300,400O), LOST

C
C NORNAL CONSOLIDATION ZONE

4 C
200 PSIuYS/(R-1.0)062

DUzlf(1 . 0X+I1Rf(R-2.0)GZG1)
GAN.(1.0.(R-1.0)'SQRT(1.OeRO(R-2.0)@1Z))/DU
DFIs2. 0f11O' COAN- 1 0/Rt)6P5
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DFJJ:2. 0*X100AH6 ((3-1.0)/ZN )l2']PSI3S/IBAR
DFJ:DFJJOSBTJ
IKSuDUS'(GAH-! . /R)O(GAH.R-2. 0)'PSI@PSI/3
DFALzPSI*6. 00(3-1. 0)OTHOGAH'ZI0'(((fl-I.0)/(R*2'

* (2.0/R-GAM-1.0))l.O)DRAL-(R-1.)DAL/N)/N002
RETURN

c
C OVERCONSOLIDATION ZONE

300 DU=1.O-Z'(1.0.TS)
GAI~z-(DU.SQRT( (X-IS-1.0)0'2.(XOZ- . 0)TYSOYS) )/(R*(XI-1 .0))
DFI=2. 0'XI0O(0A1. /N)
DFJ.2.0*IIO*( (1.0+YS)/R-I'GAH)/ZN
IKS=DUS* (OAM-I .0/R)@(DUOGAMe2. 0'A/XN)/R
DFJJ sDFJ/SRTJ
DFALu6. OOXzo*(DNAL'(TH'GAM/xN-l . O/IRA/(R@THGA)-2. O'A/XN )/
9 U"O2-DRAL*( 1. 0/TH-I.0/NA/(NTUOGAH))/N"2DAAL'(
a 1.0/N-1.0/(THOANOR))/XN)
RETURN

C
C TENSION ZONE
C

4100 01Hz (-T*BT-SQRT(BTOBT-RO*TH'OTHOIT'(T-2. OODT) ))/( I. O.RO@OT )
DFI=2. OOPSIIXI0' (GAN.T-BT)
DFJJz2. O*PSI*XIOOGAH*ROIBS/IAR
DFJ=DFJJOSRTJ
ZKSzDUS'PSI'PSI' (GAH.ST-BT)' (OAR'(BT-T ).T'(2. O*BT-T))
DYSAL:YS' (DRAL/R+DAAL/A-DNAL/IN)
DFOPAL=FOPS(DNAL/IN-YSUDTSAL/( 1. 0TS'YS))
DJOALuZJO' (DAAL/A-DYSAL/YS )+A@ (1. /YS-FOP/ZN ) DYSAL
DDTAL ( (T-BT)*DJOAL-(T-2. 0'DT)OT'DFOPAL)/(IJO-2.0 OFOP)
DROAL:DBTAL/FO/ZJO-RO' (DFOPAL/FOP.DJOAL/XJO)
DFALu3. 0'PSI*OOTHGA4*(DROAL+2. 0*RO*DBTAL/ (TeCGAN-. . BT))
RETURN
END

C

C END OF IIODCAL
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